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Preface

Understanding the structural organization of materials at the atomic scale is a long-
standing challenge of condensed matter physics and chemistry. By reducing the
size of synthesized systems down to the nanometer, or by constructing them as
collection of nanoscale size constitutive units, researchers are faced with the task of
going beyond models and interpretations based on bulk behavior. Among the wealth
of new materials having in common a “nanoscale” fingerprint, one can encounter
systems intrinsically extending to a few nanometers (clusters of various composi-
tions), systems featuring at least one spatial dimension not repeated periodically
in space and assemblies of nanoscale grains forming extended compounds. For all
these cases, there is a compelling need of an atomic-scale information combining
knowledge of the topology of the system and of its bonding behavior, based on the
electronic structure and its interplay with the atomic configurations. Recent devel-
opments in computer architectures and progresses in available computational power
have made possible the practical realization of a paradygma that appeared totally
unrealistic at the outset of computer simulations in materials science. This consists
in being able to parallel (at least in principle) any experimental effort by a simulation
counterpart, this occurring at the scale most appropriate to complement and enrich
the experiment. Focussing on the atomic scale, in which atoms (or better, ions) and
electrons are represented by explicit degrees of freedom, the ambition of bridging
the gap between the measurements carried out in a laboratory and the microscopic
variables of statistical mechanics is more and more close to be fulfilled. Therefore,
simulating materials and their behavior on a computer can be considered as of today
a feasible task accessible to an increasingly large share of researchers.

The “Institut de Physique et de Chimie des Matériaux de Strasbourg” (IPCMS
in what follows) has been one of the first on the European scientific scene to host
and promote computer modeling in the context of a variety of research activities.
All of them are focussed on material science as a combined discipline stemming
from both chemistry and physics, the common denominator being the characteri-
zation of materials through the study of their structural, electronic, magnetic, and
optical properties. Historically, IPCMS was created by the merging of five different
departments, two of them linked to chemistry (organic and inorganic materials) and
three to physics, involved in magnetism and metallic materials, surfaces and opto-
electronics, respectively. Modeling began with a special interest in magnetism and
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vi Preface

electronic structure and rapidly expended to other areas such as dynamics and topol-
ogy on surfaces, molecular dynamics on nanostructures and disordered systems,
electron dynamics and behavior of liquid crystals. The period 2006–2009 has been
characterized by the setup, in each department, of a team devoted to atomic-scale
computer modeling of materials. Two main goals can be identified. First, a consis-
tent number of experiments carried out within IPCMS are prone to be interpreted
and/or complemented by calculations, due to the increased reliability of available
schemes, (density functional theory as a main guideline, alternative descriptions of
electronic structure, and chemical bonding being also available). Second, IPCMS
scientists using the computer as the main working tool have proved able to propose
and activate new research frontiers, by going well beyond a mere supportive action
bound to back up experiments. A reveling example is provided in this book by the
contribution dealing with biochemical processes, well suited to help establishing
new bridges between biology and material science, unforeseen only a few years
ago.

From the standpoint of methodology, computational science within IPCMS is
able to offer a broad spectrum of techniques and applications. Looking for represen-
tative keywords, one would be tempted to select “atomic scale and density functional
theory” on the side of methods and “nanostructures” on the side of applications.
By atomic scale we intend a methodology rooted in the behavior of atoms and the
underlying chemical bonding as coming out from modern and tractable theoretical
tools, capable of describing with equal accuracy few atoms as well a few hundredths
of them. This is case of density functional theory largely employed within IPCMS
in the context of eletron dynamics and excited states, theory of magnetism, weak
chemical interactions and first-principles molecular dynamics. Situations character-
ized by unaffordable system sizes are also considered. This is the case of surface
topology and diffusion, for which sensible approximations of the interatomic inter-
actions are put to good use in the search of diffusion mechanisms on surfaces. On the
side of the applications, the focus on nanostructures is legitimated by experimental
work on several fields related to nanoscience (femtosecond magnetism, spintronics,
electron microscopy, widespread use of several surface probes like STM). Moreover,
for each of the systems presented hereafter, specific atomic and/or molecular groups
can be identified, irrespective of their being part of an isolated three-dimensional
nanostructure, or, at the opposite end, of an interface resulting from distinct bulk-like
arrangements having peculiar electronic and magnetic properties.

Taken altogether, the above considerations have strongly motivated the idea of
producing a collection of research papers written by the computational scientists
working at IPCMS. Also, we came to the conviction that “Atomic-scale modeling
of nanosystems and nanostructured materials” could have been a good title since
reflecting current ativity and future directions undertaken by the host institurion.
This set of papers is designed to achieve optimal balance of methodological pur-
poses, review parts, and recent applications. Each contribution contains enough
methodological elements to be understood by a graduate student in chemistry or
physics. Moreover, the presentation of the results is intended to be a valid instru-
ment of scientific communication for both the specialists in each specific area and
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a first-time reader. Finally, being all the authors exposed in their everyday work
to neighboring experimental activities, a special effort has been taken to make all
chapters accessible to the non-specialist willing to interact and being exposed to
simulations. We stress that the international reputation of all contributors is well
established, with more than 1,100 papers published in internationally peer-reviewed
journals and a consistent share of awarded invited talks, in the range of 40–50 every
year. These data are unambiguous scientific facts demonstrating the quality and the
impact on the international scene of computer modeling in material science within
IPCMS. The contributions are presented in an order that reflect the size of the sys-
tems considered and the spatial range of the chemical and physical mechanisms
under consideration. In this way, we start from the farthest apart to applied material
science (electron dynamics and excitations) to end with the closest to bulk materials
(magnetic compounds, disordered networks) featuring relevant phenomena on the
nanoscale.

The promotors of the present initiative and the authors of the different chapters
are indebted to the director of the IPCMS, Dr. Marc Drillon, for his encouragement
and support during the course of the preparation of this book. Stimulating interac-
tions also occurred with Prof. François Gautier, who was at the origin of the creation
of IPCMS in the 1980s.

Strasbourg, July 2009 C. Massobrio
H. Bulou

C. Goyhenex
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Collective Electron Dynamics in Metallic
and Semiconductor Nanostructures

G. Manfredi, P.-A. Hervieux, Y. Yin, and N. Crouseilles

Abstract We review different approaches to the modeling and numerical simulation
of the nonlinear electron dynamics in metallic and semiconductor nanostructures.
Depending on the required degree of sophistication, such models go from the full
N -body dynamics (configuration interaction), to mean-field approaches such as the
time-dependent Hartree equations, down to macroscopic models based on hydro-
dynamic equations. The time-dependent density functional theory and the local-
density approximation – which have become immensely popular during the last two
decades – can be understood as an upgrade of the Hartree approach allowing one to
include, at least approximately, some effects that go beyond the mean-field. Alter-
native methods, based on Wigner’s phase-space representation of quantum mechan-
ics, are also described. Wigner’s approach has the advantage of permitting a more
straightforward comparison between semiclassical and fully quantum results. As an
illustrative example, the many-electron dynamics in a semiconductor quantum well
is studied numerically, using both a mean-field approach (Wigner–Poisson system)
and a quantum hydrodynamical model. Finally, the above methods are extended
to include the spin degrees of freedom of the electrons. The local-spin-density
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2 G. Manfredi et al.

approximation is used to investigate the linear electron response in metallic nanos-
tructures. The modeling of nonlinear spin effects is sketched within the framework
of Wigner’s phase-space dynamics.

1 Introduction

Understanding the electron dynamics and transport in metallic and semiconduc-
tor nanostructures – such as metallic nanoparticles, thin films, quantum wells, and
quantum dots – represents a considerable challenge for today’s condensed matter
physics, both fundamental and applied.

Experimentally, thanks to the recent development of ultrafast spectroscopy tech-
niques, it is now possible to monitor the femtosecond dynamics of an electron gas
confined in metallic nanostructures such as thin films [1–8], nanotubes [9], metal
clusters [10, 11], and nanoparticles [6, 7, 12, 13]. Therefore, meaningful com-
parisons between experimental measurements and numerical simulations based on
microscopic theories are becoming possible.

The dynamics of an electron gas confined in a metallic nanostructure is charac-
terized by the presence of collective oscillations (surface plasmon) whose spectral
properties depend on several conditions of temperature, density, and coupling to the
environment. At lowest order, the linear response of the electron gas is simply given
by the plasma frequency ωp = (e2n/mε0)1/2 (up to a dimensionless geometrical
factor) and does not depend on the temperature or the size of the nano-object.
The plasma frequency represents the typical oscillation frequency for electrons
immersed in a neutralizing background of positive ions, which is supposed to be
motionless because of the large ion mass. The oscillations arise from the fact that,
when some electrons are displaced (thus creating a net positive charge), the resulting
Coulomb force tends to pull back the electrons toward the excess positive charge.
Due to their inertia, the electrons will not simply replenish the positive region, but
travel further away, thus re-creating an excess positive charge. This effect gives
rise to coherent oscillations at the plasma frequency. Notice that, for a metallic
nanostructure, the inverse plasma frequency is typically of the order of the femto-
second – this coherent regime can therefore be explored with the ultrafast spec-
troscopy techniques developed in the last two decades.

The coherence of such collective motions is progressively destroyed by Lan-
dau damping (i.e., by coupling to the internal degrees of freedom of the electron
gas) and by electron–electron or electron–phonon collisions. The damping of the
plasmon was observed experimentally in gold nanoparticles [14] and was studied
theoretically in several works [15–17].

Although the linear response of the surface plasmon has been known for a
long time, fully nonlinear studies have only been performed in the last decade
and have revealed some interesting features. Our own contribution to this research
area has mainly focused on the nonlinear electron dynamics in thin metal films,
where the emergence of ballistic low-frequency oscillations has been pointed out
[18–20].



Collective Electron Dynamics 3

On the other hand, the same type of collective electron motion is also observed in
semiconductor nanostructures, such as quantum wells and quantum dots. Although
the spatial and temporal scales differ by several order of magnitudes with respect to
metallic nanostructures (due to the large difference in the electron density), the rel-
evant dimensionless parameters take similar values in both cases [21]. For instance,
the effective Wigner–Seitz radius is of order unity for both metallic and semiconduc-
tor nano-objects. Therefore, the electron dynamics can be investigated using similar
models and both types of nano-objects are expected to share a number of similar
dynamical properties.

In this review article, we will describe the collective electron dynamics in
metallic and semiconductor nanostructures using different, but complementary,
approaches. For small excitations (linear regime), the spectral properties can be
investigated via quantum mean-field models of the TDLDA type (time-dependent
local-density approximation), generalized to account for a finite electron tempera-
ture. In order to explore the nonlinear regime (strong excitations), we will adopt
a phase-space approach that relies on the resolution of kinetic equations in the
classical phase-space (Vlasov and Wigner equations). The phase-space approach
provides a useful link between the classical and quantum dynamics and is well
suited to model effects beyond the mean-field approximation (electron–electron
and electron–phonon collisions). We will also develop a quantum hydrodynamic
model based on velocity moments of the corresponding Wigner distribution func-
tion: this approach should lead to considerable gains in computing time in compar-
ison with simulations based on conventional methods, such as density functional
theory (DFT).

The above studies all refer to the charge dynamics in a semiconductor or metallic
nanostructure, which has been intensively studied in the last three decades. In more
recent years, there has been a surge of interest in the spin dynamics of the carriers,
mainly for possible applications to the emerging field of quantum computing [22]. A
promising approach to the development of a quantum computer relies on small semi-
conductor devices, such as quantum dots and quantum wells [23]. To implement
basic qubit operations, most proposed schemes make use of the electron spin states,
so that a thorough understanding of the spin dynamics is a necessary prerequisite.
Nevertheless, in order to manipulate the electrons themselves, one must necessar-
ily resort to electromagnetic fields, which in turn excite the Coulomb mean-field
[24, 25]. The charge and spin dynamics are therefore closely intertwined and both
must be taken into account for a realistic modeling of semiconductor-based qubit
operations.

The ultrafast magnetization (spin) dynamics in ferromagnetic nanostructures
has also attracted considerable experimental attention in the last decade. Pioneer-
ing experiments [26–28] on ferromagnetic thin films revealed that the magneti-
zation experiences a rapid drop (on a femtosecond timescale) when the films are
irradiated with an ultrafast laser pulse, after which it slowly regains its original
value on a timescale close to that of the electron–phonon coupling. Despite many
attempts [26–30], a clear theoretical explanation for these effects is still lacking.
Here, we will illustrate how this problem can be addressed using some of the
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techniques developed for the electron dynamics, particularly quantum mean-field
and phase-space methods, which will be generalized to include the spin degrees of
freedom.

2 Models for the Electron Dynamics

Metallic and semiconductor nano-objects operate in very different regimes, as the
electron density is several orders of magnitudes larger for the former. Consequently,
the typical time, space, and energy scales can be very different, as illustrated in
Table 1. However, if one takes into account the effective electron mass and dielectric
constant, the relevant dimensionless parameters turn out to be rather similar [21]:
for instance, from Table 1 we see immediately that the ratio of the screening length
(Lscreen = vF/ωp, where vF is the Fermi velocity) to the effective Bohr radius
aB = 4πε�

2/me2 is of order unity. The same happens for the ratio of the plasmon
energy �ωp to the Fermi energy EF , so that the normalized Wigner–Seitz radius rs

is also of order unity for both cases.1

It is therefore not surprising that the electron dynamics of both types of nanos-
tructures can be described by means of similar models. A bird’s-eye view of the var-
ious relevant models is provided in Fig. 1. The diagram represents the various levels
of modeling for the electron dynamics, both quantum (left column, dark gray) and
classical (right column, light gray). The highest level of description is the N -body
model, which involves the resolution of the N -particle Schrödinger equation in the
quantum regime, or the N -particle Liouville equation for classical problems (the

Table 1 Typical time, space, and energy scales for metallic and semiconductor nanostructures

Metal film Quantum well

ne 1028m−3 1022m−3

m me m∗ � 0.07me

ε ε0 ε � 12ε0

Lscreen 1 Å 100 Å
ω−1

p 1 fs 1 ps
EF 1 eV 1 meV
TF 104 K 10 K
aB 0.529 Å 100 Å
alatt 5 Å 5 Å
rs/aB 5 3

1 For a quantum well, all relevant lengths far exceed the semiconductor lattice spacing alatt �
5 Å. This makes semiconductor systems a much better approximation to jellium (i.e., a continuum
ionic density profile) than simple metals, for which the lattice spacing is comparable to the other
electronic lengths.
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Fig. 1 Bird’s-eye view of the models used to describe the electron dynamics. From top to bottom:
N -body, mean-field, and macroscopic (hydrodynamic) theory. Left column (dark gray): quan-
tum models; right column (light gray): classical models. Notation: x = exchange; xc = exchange
and correlations; λD = Debye length (classical screening length); L F = Thomas–Fermi screening
length; k = typical wavevector; BBGKY = Bogoliubov, Born, Green, Kirkwood, Yvon hierarchy

latter is of course equivalent to Newton’s equations of motion). This is a difficult
task even classically, although molecular dynamics simulations that solve the exact
N -body problem can nowadays attain a considerable level of sophistication. For
Newton’s equations with two-body interactions, the numerical complexity grows at
most as N 2, and in some cases this can be reduced to a logarithmic dependence.
Quantum mechanically, the N -body problem is virtually unmanageable, except for
very small systems, because the size of the relevant Hilbert space grows exponen-
tially with N . Nevertheless, exact simulations of the N -body Schrödinger equation
can be performed using the so-called configuration interaction (CI) method. We have
used this approach to study the exact electron dynamics in semiconductor quantum
dots containing up to four electrons.

For larger systems, some rather drastic approximations need to be made if we
want to end up with a mathematically and numerically tractable model. Most such
reduced models are improvements on the so-called “mean-field approximation,”
which states that the motion of a single electron is determined by the positions
and velocities of all other particles in the system. Such collective behavior is pos-
sible because of the long-range nature of electromagnetic forces. The mean-field
approach can be viewed as a zeroth-order approximation to the N -body problem
in which two-body (and higher order) correlations between the particles have been
neglected. Classically, this procedure is known as the BBGKY hierarchy (from the
names of Bogoliubov, Born, Green, Kirkwood, and Yvon) [31].

For classical systems of charged particles (plasmas), the mean-field dynamics is
governed by the Vlasov equation, which describes the evolution of a one-particle
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probability density in the phase-space. The quantum analog of the Vlasov equation
is provided by the time-dependent Hartree equations, which are actually one-body
Schrödinger equations evolving in the mean-field potential. In both cases, the mean-
field is obtained by solving Maxwell’s equations, often reduced, in the electrostatic
limit, to the sole Poisson’s equation.

In this review, we concentrate on quantum-mechanical models. Several improve-
ments have been proposed to the Hartree equations (which were derived in 1927,
just 1 year after Schrödinger’s seminal paper on the wave equation), most notably
Fock’s correction (1930). Indeed, the Hartree method does not respect the principle
of antisymmetry of the wave function, although it does use the Pauli exclusion prin-
ciple in its less stringent formulation, forbidding the presence of two electrons in
the same quantum state. The Hartree–Fock equations respect the antisymmetry of
the wave functions, thus leading to an extra interaction term between the electrons,
termed the “exchange interaction.”

A particularly successful extension of the mean-field approach is the density
functional theory (DFT), which was developed by Hohenberg, Kohn, and Sham in
the mid 1960s [32, 33]. Originally developed for the ground state at zero temper-
ature, it has subsequently been extended to finite temperature and time-dependent
problems. As its name suggests, DFT states that all the properties of a many-electron
systems are determined by the electron spatial density, rather than by the wave
functions. DFT allows one to introduce in the mean-field formalism effects that go
beyond the strict mean-field approximation, particularly the exchange interaction
described above. Indeed, DFT can deal with higher order correlations between the
electrons, in principle exactly if the exact density functional were known. In prac-
tice, one has to make an educated guess for the appropriate correlation functional,
which leads to various empirical approximations. Nevertheless, DFT has proven
immensely useful for a wide range of electronic structure calculations.

The Hartree equations can be equivalently recast in a phase-space formalism
by making use of the Wigner transformation, which was introduced by E. Wigner
in 1932 [34]. The resulting Wigner function is a pseudo probability distribution,
which can be used to compute expectation values just like its classical counterpart.
Unfortunately, the Wigner function can take negative values, which precludes the
possibility of interpreting it as a true probability density.

By taking velocity moments of the Wigner equation – and using some appro-
priate closure hypotheses – one can derive a set of quantum hydrodynamical (or
fluid) equations that govern the evolution of macroscopic quantities such as the
particle density, average velocity, pressure, and heat flux. Compared to the Wigner
approach, the hydrodynamical one is obviously numerically advantageous, as it
requires the resolution of a small number of equations in real (not phase) space.
Generally speaking, hydrodynamical methods yield accurate results over distances
that are larger than the typical electrostatic screening length, which is the Debye
length λD = (kB Teε/e2n)1/2 for classical plasmas and the Thomas–Fermi screening
length L F = vF/ωp for degenerate electron gases (see Table 1).

In the following subsections, we shall present a brief overview of most of the
quantum models introduced in Fig. 1.
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2.1 Exact N-body Simulations: The Configuration
Interaction (CI) Method

2.1.1 Method

In the Hartree–Fock model (HF), the many-body wave function is approximated by a
single Slater determinant leading to a correlation between electrons having the same
spin. However, electrons of different spin are not correlated in this approximation.
This is why the difference between the exact value of the energy and the HF value
is called the correlation energy. There are a number of quantum chemistry methods,
which attempt to improve the description of the many-body wave function. The most
important one is the so-called configuration interaction method (CI) [35] which is
based on the minimization of the energy with respect to the expansion coefficients
of a trial many-body wave function expressed as a linear combination of Slater
determinants. With respect to the models based on density functional methods, the
drawback of the CI method is its unfavorable scaling with the system size. Indeed,
the dimension of a full CI calculation grows factorially with the number of electrons
and basis functions.

From the above considerations, it is clear that CI calculations are restricted to
confined systems with very few electrons (typically less than 10). In quantum chem-
istry, the “basis set” usually refers to the set of (nonorthogonal) one-particle func-
tions used to build molecular orbitals. Concerning the computational methodology
for confined electron systems (atoms, molecules, clusters, nanoparticles, quantum
dots...) localized basis sets are the traditional choice and the most common type
of basis functions is the Gaussian functions. It is worth noticing that, from the
knowledge of the exact many-body wave-function, one can in principle (i) compute
the temporal evolution of the system, including the dynamical correlations and (ii)
obtain the true excited states of the system.

In the following, an application of the CI method in the field of semiconductor
nanostructures and quantum dots is presented.

2.1.2 Application

Recent progress in semiconductors technology allows the realization of quantum
systems composed of a small number of electrons (even a single electron!) confined
in nanometer-scale potential wells. These systems, which provide highly tunable
structures for trapping and manipulating individual electrons, are often named arti-
ficial atoms or quantum dots and are good candidates for the emerging technol-
ogy of quantum computing. They have certain similarities with atoms in the sense
that they have a discrete electronic structure that follows the well-known Hund’s
rule of atomic physics. However, in quantum dots the electrons are generally con-
fined by harmonic or quasi-harmonic potentials, whereas atoms are characterized
by Coulomb confinement potentials. The spectral properties of quantum dots are
exotic with respect to the properties of atoms in the sense that most of the oscillator
strength is concentrated almost exclusively on one dipolar transition. This property
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is a direct consequence of Kohn’s theorem (KT) and does not depend on the number
of electrons, the strength of the confinement, or the electron–electron interaction
[36].

In a recent work [37], we have investigated quasi-two-dimensional Gaussian
quantum dots containing up to four electrons within the framework of the CI method
which allows in principle an exact treatment of the many-electron system. The
Schrödinger equation for N -electrons confined by a potential Vext is given by

HΨ(1, ..., N ) = EΨ(1, ..., N ), (1)

where (1, ..., N ) represents the space [r i = (xi , yi , zi )] and spin coordinates of the
electrons and

H =
N∑

i=1

− �
2

2m
∇2

i +
N∑

i> j

e2

4πε|r i − r j | +
N∑

i=1

Vext(r i ) . (2)

The confinement is modeled by an external one-particle anisotropic Gaussian
potential given by

Vext(r i ) = −D exp
[−γ (x2

i + y2
i )
]+ 1

2
m2ω2

z z2
i . (3)

It is worth noticing that for sufficiently large values of ωz the electrons of the
system are strongly compressed along the z direction. Therefore, in this situation,
the system can be regarded as a quantum system confined by a two-dimensional
Gaussian-type potential, i.e., as a quasi-two-dimensional Gaussian quantum dot.
Since a Gaussian potential can be approximated close to its minimum by an har-
monic potential, the potential of Eq. (3) is suitable for the modeling of anharmonic
quantum dots. The anharmonicity of the confinement can be characterized by the
depth of the Gaussian potential D and by the quantity ω = √

2Dγ /m. Thus, when
D is much larger than �ω the Gaussian potential has many bound states and the
potential curve follows closely the harmonic oscillator potential leading to a small
anharmonicity of the system. On the other hand, when D is slightly larger than �ω

the Gaussian potential has only few bound states and, therefore, deviates strongly
from the harmonic potential leading to a large anharmonicity. Also, a large (small)
value of ω corresponds to a strong (weak) confinement with respect to the electron–
electron interaction.

The wave function is approximated by a linear combination of Cartesian
anisotropic Gaussian-Type Orbitals (c-aniGTO) [38, 39]. A c-aniGTO centered at
(bx , by, bz) is defined as

χa,ζ (r , b) = xax
bx

y
ay

by
zaz

bz
exp(−ζx x2

bx
− ζy y2

by
− ζz z2

bz
) , (4)

where xbx = (x − bx ) etc... Following the quantum chemical convention the orbitals
are classified as s-type and p-type, for l = ax + ay + az = 0, 1, ..., respectively
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(this sum controls the value of the orbital angular momentum). The (bx , by, bz)
parameters have been chosen to coincide with the center of the confining potential.
This type of basis sets was found to be the most suitable one for expanding the
eigenfunctions of an electron in an anisotropic harmonic oscillator potential. The
calculations have been performed using the OpenMol Program.2

Energy spectra and oscillator strengths have been calculated for different strength
of confinement ω and potential depth D. The effect of the electron–electron inter-
action on the distribution of oscillator strengths and the breakdown of the KT has
been examined by focusing on the results with the same value of D/�ω, i.e., with
the same anharmonicity.

A substantial red-shift has been observed for the dipole transitions correspond-
ing to the excitation into the center-of-mass mode. The oscillator strengths, which
are concentrated exclusively in the center-of-mass excitation in the harmonic limit,
are distributed among the near-lying transitions as a result of the breakdown of the
Kohn’s theorem. The distribution of the oscillator strengths is limited to the transi-
tions located in the lower energy region when ω is large (i.e., for strongly confined
electrons) but it extends toward the higher energy region when ω becomes small
(i.e., for weakly confined electrons).

The analysis of the CI wave functions shows that all states can be classified
according to the polyad quantum number vp [37]. The distribution of the oscilla-
tor strengths for large ω occurs among transitions involving excited states with the
same value of vp as the center-of-mass excited state, vp,cm , while it occurs among
transitions involving the excited states with vp = vp,cm and vp = vp,cm+2 for
small ω.

2.2 Time-Dependent Density Functional Theory (TDDFT)
and the Local-Density Approximation (LDA)

Time-dependent density functional theory (TDDFT) extends the basic ideas of
static density functional theory (DFT) to the more general situation of systems
under the influence of time-dependent external fields. This dynamical approach
relies on the electron density n(r , t) rather than on the many-body wave function
Ψ(r 1, r 2, ..., r N , t) of the system. In fact, the central theorem of the TDDFT is
the Runge–Gross theorem [40–42] which tells us that all observables are uniquely
determined by the density.

From the computational point of view, with respect to the resolution of the time-
dependent Schrödinger equation (TDSE) of an N -electron system, the complexity is
strongly reduced when using TDDFT. Indeed, the wave function depends on 3N +1
variables (r 1, r 2, ..., r N , t) while the density depends only on 4 variables (r , t).
This is one of the reasons why this method has become so popular. A practical

2 see http://www.csc.fi/gopenmol
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scheme for computing n(r , t) is provided by the Kohn–Sham (KS) formulation of
the TDDFT [32, 33]. In the latter, noninteracting electrons are moving in an effective
local potential constructed in such a way that the KS density is the same as the
one of the interacting electron system. The advantage of this formulation lies in
its computational simplicity compared to other quantum chemical methods such as
time-dependent Hartree–Fock or configuration interaction. The KS equations read
as

i�
∂

∂t
φk(r , t) =

(
− �

2

2m
∇2 + Veff(r , t)

)
φk(r , t), (5)

with the KS density

n(r , t) =
∞∑

k=1

fk |φk(r , t)|2 , (6)

where fk denotes the occupation numbers of the ground state, and

Veff(r , t) = Vext(r , t) + VH (r , t) + Vxc(r , t) . (7)

In the above expression the first term is the external potential (ionic potential,
laser field...), the second is the Hartree potential, which is a solution of the Poisson’s
equation, and the last term is the exchange–correlation potential.

The most popular choice for Vxc is the so-called adiabatic local-density approxi-
mation (ALDA) given by

Vxc(r , t) = d

dn
[nεxc(n)]n=n(r ,t) , (8)

where εxc(n) is the exchange–correlation energy density for an homogeneous elec-
tron gas of density n. In this approach, the same functional used to calculate the
properties of the ground state is employed in the dynamical simulations.

The validity of the local approximation has been discussed in many papers and
textbooks [43]. This approximation works remarkably well for inhomogeneous elec-
tron systems. In contrast, the validity of the adiabatic approximation has been less
thoroughly analyzed. Generally speaking, this approach is expected to hold for
finite systems and for processes that evolve very slowly in time. The situation in
bulk solids is more controversial since significant deficiencies in the description
of absorption spectra have been noticed [44]. It was shown by Dobson [45] that
ALDA fulfils the Kohn theorem when applied to a system of interacting electrons
confined in an external parabolic potential. This theorem guarantees the existence of
a collective state at the same frequency as the harmonic potential. It corresponds to
a rigid oscillation of the many-body wave function around the center of the external
potential.
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Only a few attempts have been made to go beyond ALDA. To date, the most
important ones are the work of Gross and Kohn [46] and that of Vignale and Kohn
[47], the latter being the most promising in particular for studying electron relax-
ation phenomena [48]. Contrarily to ALDA, the approach of Gross and Kohn, which
uses a frequency-dependent parametrization of the exchange–correlation kernel (see
below), does not fulfil the Kohn theorem [52, 45]. This problem was further investi-
gated by Vignale and Kohn [47], who proposed a new theory based on the so-called
current density functional theory (CDFT). This model is described in detail in [49].
CDFT was originally derived by Vignale and Rasolt [50] to describe, within the
framework of DFT, situations where strong magnetic fields and orbital currents can-
not be ignored.

Few works have been devoted to the study of the nonlinear electron dynamics in
finite metallic systems exposed to strong external fields. Indeed, the resolution of
the time-dependent Kohn–Sham equations (5) is a very difficult task particularly for
3D systems. Some pioneering work on free simple metal clusters was performed by
E. Suraud in Toulouse and P.-G. Reinhard in Erlangen [51]. More recently, Gervais
et al. [52] have investigated the same problem in 3D geometry using a spherical basis
expansion technique. This approach is restricted to small metal clusters. The inter-
action of strong femtosecond laser pulses with a C60 molecule (which possesses 240
delocalized electrons and can therefore be considered as a metallic nano-object [53])
has been investigated in [54] by employing a TDDFT approach. Still concerning the
fullerene molecule, Cormier et al. [55] studied multiphoton absorption processes by
solving numerically the associated time-dependent Schrödinger equation (TDSE)
in the single active electron (SAE) approximation. This approximation consists in
solving the equations (5) by using, instead of the time-dependent effective potential
Veff(r , t) given in Eq. (7), the static effective potential of the ground state together
with the time-dependent electric potential of the laser.

Let us now examine the linear regime, which has received much wider attention
in the past.

Under the condition that the external field is weak, the simplest way to imple-
ment TDDFT is to work within the framework of the linear response theory. This
approximation was first introduced by Zangwill and Soven [56] in the context of
atomic physics for the study of photoionization in rare gases. Subsequently, this
formalism has been successfully extended to the study of more and more complex
electron systems: molecules [57], simple metal clusters [58], noble metal clusters
[59], thin metal films [60], quantum dots [61], and condensed phase systems [44].

To date, in the field of nanoparticle physics, most applications of the time-
dependent Kohn–Sham formalism have been performed at zero electron temper-
ature. In order to interpret time-resolved pump-probe experiments carried out on
noble metal nanoparticles, we have recently extended this approach to finite tem-
perature. In the following we provide a brief overview of the model with the basic
equations.
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2.2.1 Ground State

The electron gas is assumed to be at thermal equilibrium with temperature Te. In
the Kohn–Sham formulation of the density functional theory at finite temperature
within the grand-canonical ensemble [62–65], the ground-state electron density n of
an N -electron system is written, in terms of single-particle orbitals φi and energies
εi , as

n(r ) =
∞∑

k=1

fk nk(r ) =
∞∑

k=1

fk |φk(r )|2, (9)

where fk = [1 + exp {(εk − μ)/kB Te}
]−1

are the Fermi occupation numbers and μ

is the chemical potential. These orbitals and energies obey the Schrödinger equation

[
− �

2

2m
∇2 + Veff(r )

]
φi (r ) = εiφi (r ) , (10)

where Veff(r ) is an effective single-particle potential given by

Veff(r ) = Vext(r ) + VH (r ) + Vxc(r ) , (11)

where Vext(r ) is an external potential (e.g., due to the ionic background), VH (r ) is
the Hartree potential solution of Poisson’s equation, and Vxc(r ) is the exchange–
correlation potential defined by

Vxc(r ) = d

dn
[nωxc(n)]n=n(r ) , (12)

where Ωxc(n) ≡ ∫
n(r ) ωxc(n(r )) dr is the exchange–correlation thermody-

namic potential [66]. The temperature appears in the self-consistent procedure
only through the occupation numbers and the exchange–correlation thermodynamic
potential.

For low temperature (i.e., Te � TF [n(r )] where TF [n(r )] = �
2

2mkB

(
3π2n(r )

)2/3

is the local Fermi temperature), ωxc(n) may be safely replaced by its value at Te = 0,
i.e., by εxc(n). The chemical potential is determined self-consistently by requiring
the conservation of the total number of electrons from Eq. (9) [67, 68].

2.2.2 Excited States

In the usual first-order TDLDA at Te = 0 in the frequency domain, the induced elec-
tron density δn(r ; ω) is related to δVext(r ′; ω), the Fourier transform (with respect
to time) of the external time-dependent potential (generated, for instance, by the
electric field of a laser beam), via the relation [56, 58, 69]
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δn(r ; ω) =
∫

χ (r , r ′; ω) δVext(r
′; ω) dr ′, (13)

where χ (r , r ′; ω) is the retarded density correlation function or the dynamic response
function. It is possible to rewrite the induced density as

δn(r ; ω) =
∫

χ0(r , r ′; ω) δVeff(r
′; ω) dr ′, (14)

with

δVeff(r ; ω) = δVext(r ; ω) + e2

4πε0

∫
δn(r ′; ω)

|r − r ′| dr ′

+
∫

fxc(r , r ′; ω) δn(r ′; ω) dr ′, (15)

where the function fxc(r , r ′; ω) is the Fourier transform of the time-dependent ker-
nel defined by fxc(r , t ; r ′, t ′) ≡ δVxc(r , t)/δn(r ′, t ′) and χ0(r , r ′; ω) is the non-
interacting retarded density correlation function. From Eqs. (13)–(15) we see that
χ0 and χ are related by an integral equation (Dyson-type equation)

χ (r , r ′; ω) = χ0(r , r ′; ω) +
∫ ∫

χ0(r , r ′′; ω)

× K (r ′′, r ′′′; ω) χ (r ′′′, r ′; ω) dr ′′dr ′′′, (16)

with the residual interaction defined by

K (r , r ′; ω) = e2

4πε0|r − r ′| + fxc(r , r ′; ω). (17)

In the adiabatic local-density approximation (ALDA) the exchange–correlation
kernel is frequency-independent and local and reduces to [56, 69]

fxc(r , r ′) = d

dn
[Vxc(n)]n=n(r ) δ

(
r − r ′) . (18)

It should be mentioned that the functional, Vxc in the above equation is the same
as the one used in the calculation of the ground state [see Eq. (12)]. For spin-
saturated electronic systems, we have
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χ0(r , r ′; ω) = 2
∑

jk

[
f 0

j − f 0
k

] φ∗
j (r )φk(r )φ∗

k (r ′)φ j (r ′)

�ω − (εk − ε j ) + iη

=
occ∑

k

φ∗
k (r )φk(r ′) G+(r , r ′; εk + �ω) +

occ∑

k

φk(r )φ∗
k (r ′) G∗

+(r , r ′; εk − �ω), (19)

where φk(r ) and εk are the one-electron Kohn–Sham wave functions and energies,
respectively. G+ is the one-particle retarded Green’s function and f 0

k are the Fermi
occupation numbers at Te = 0 K (0 or 1). All the above quantities are obtained
with the procedure described in the preceding subsection with fk = f 0

k in Eq. (9).
In order to produce numerically tractable results, we have added a small imaginary
part to the probe frequency, so that ω → ω + iδ with η = �δ.

At finite electron temperature, the grand-canonical non-interacting retarded den-
sity correlation function reads [70]

χ0(r , r ′; ω; Te) = 1

ZG

∑

n,N

exp

{
− 1

kB Te
[En(N ) − Nμ]

}

× χ0
n,N (r , r ′; ω; Te), (20)

where ZG is the grand-canonical partition function

ZG =
∑

n,N

exp

{
− 1

kB Te
[En(N ) − Nμ]

}
(21)

with En(N ) the energy of the state |nN 〉 having N electrons, μ the chemical poten-
tial and

χ0
n,N (r , r ′; ω; Te) =

∑

m

〈nN |n̂(r )| m N 〉 〈m N
∣∣n̂(r ′)

∣∣ nN
〉

�ω − (Em(N ) − En(N )) + iη

−
〈
nN
∣∣n̂(r ′)

∣∣m N
〉 〈m N |n̂(r )| nN 〉

�ω + (Em(N ) − En(N )) + iη
. (22)

In the above expression n̂(r ) is the particle density operator defined from the
wave field operators by

n̂(r ) = ψ̂+(r )ψ̂(r ), (23)

with ψ̂+(r ) = ∑k â+
k φ∗

k (r ) and ψ̂(r ) = ∑k âk φk(r ). By using standard field
theory techniques it is possible to show that
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χ0(r , r ′; ω; Te) =
∑

k

fk φ∗
k (r )φk(r ′) G+(r , r ′; εk + �ω; Te)

+
∑

k

fk φk(r )φ∗
k (r ′) G∗

+(r , r ′; εk − �ω; Te), (24)

where fk = [1 + exp {(εk − μ)/kB Te}
]−1

. So far, we have assumed that the residual
interaction (17) is temperature independent. This assumption is consistent with the
use of ωxc(n) = εxc(n) in the calculation of the ground-state properties. Therefore,
as for Te = 0, the response function is solution of the Dyson equation (16) with χ0

given by Eq. (24).
The above formalism can be employed to compute the photoabsorption by a

metallic nanoparticle of size R. If the wavelength λ of the incoming light is such that
λ  R the dipolar approximation is valid. From the frequency-dependent dipole
polarizability

α (ω; Te) =
∫

δn(r ; ω; Te) δVext (r ; ω) dr , (25)

one obtains the dipolar absorption cross-section [71]

σ (ω; Te) = ω

ε0c
Im [α (ω; Te)] . (26)

As for the zero temperature case, the dipolar absorption cross-section fulfils the
well-known Thomas–Reiche–Kuhn (TRK) sum rule

∫
σ (ω; Te) dω = 2π2 N

c
. (27)

2.2.3 Application to Femtosecond Spectroscopy

Ultrafast spectroscopy using femtosecond laser pulses is a well-suited technique
to study the electronic energy relaxation mechanisms in metallic nanoparticles (see
[6, 12] and references therein). The experiments have been carried out with nanopar-
ticles of noble metals containing several thousand atoms and embedded in a trans-
parent matrix. By using a time-resolved pump-probe configuration it is possible to
have access to the spectral and temporal dependence of the differential transmis-
sion ΔT

T (τ, ω), defined as the normalized difference between the probe pulse with
and without the pump pulse. This quantity contains the information on the electron
dynamics, which is measured as a function of the pump-probe time delay τ and of
the laser frequency ω.

For pump-probe delays longer than a few hundred femtoseconds, the thermal-
ization of the electrons is achieved, thus leading to an increase of the electron
temperature of several hundred degrees. However, the electronic distribution is not
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in thermal equilibrium with the lattice, the thermal relaxation to the lattice being
achieved in a few picoseconds via electron–phonon scattering. The energy exchange
between the electrons and the lattice can be described by the two temperature model
leading to a time-dependent electron temperature Te(t) [72, 73]

Ce
∂Te

∂t
= −G(Te − Ti ) + P(t),

Ci
∂Ti

∂t
= G(Te − Ti ), (28)

where P(t) represents the laser source term, Ci (Ce) is the lattice (electron) heat
capacity, and G is the electron–lattice coupling factor. In this simplified model,
the two temperatures are assumed to be spatially uniform and therefore the heat
propagation is neglected.

Provided that the relative changes of the dielectric function with respect to a
non-perturbed system are weak (linear regime) and that they are only due to a
modification of the electron temperature, one may identify the spectral dependence
of the differential transmission measured for a given time delay as the difference
of the linear absorption cross-sections evaluated at different electron temperatures.
More precisely, the differential transmission is expressed as

ΔT

T
(τ, ω) = T [Te(τ ), ω] − T [Te(0), ω]

T [Te(0), ω]
= −Δα̃(ω) l (29)

= 3

2π R2
[σ (ω; Te(0)) − σ (ω; Te(τ ))] , (30)

where l = 2R is the sample thickness (here, the diameter of the nanoparticle),
T [Te(τ ), ω] and T [Te(0), ω] are the probe transmissions in the presence and absence
of the pump, respectively, and Δα̃ is the pump-induced absorption change. Obvi-
ously T [Te(0), ω] corresponds to an absorption at room temperature Te(0) = 300
K for the conditions where the pump-probe experiments have been performed. We
have computed the optical spectrum of a closed-shell nanoparticle Ag2998 embedded
in a transparent matrix (alumina εm = 1.5) for three values of the temperature. The
diameter of the nanoparticle is 4.6 nm and the photon energy ranges from 2.2 eV
to the interband threshold energy at 3.8 eV, i.e., in the spectral region associated
to the surface plasmon of Ag nanoparticles. All these values correspond to typical
experimental conditions performed in our group [6]. The results are presented in
Fig. 2. The calculated oscillator strength is 90%. Indeed, due to the presence of the
surface plasmon resonance, almost all the oscillator strength is concentrated in this
energy range. A clear red-shift and broadening of the resonance as a function of the
electron temperature is observed.

In the left panel of Fig. 3, the predictions of the normalized differential trans-
mission [Eq. (30)] are presented as a function of the photon energy of the probe.
The comparison is made for two electron temperatures Te = 600 K and Te = 1200
K. The asymmetric shape of ΔT/T around the resonance energy is related to a
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Fig. 2 TDLDA
photoabsorption cross-section
(in atomic units) of Ag2998

encapsulated in a transparent
matrix (εm = 1.5) as a
function of the photon
energy. Solid line: Te = 0 K;
dashed line: Te = 300 K;
dotted line: Te = 1200 K
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combination of a red-shift and a broadening of the surface plasmon resonance.
In the right panel of Fig. 3 the experimental spectrum of the normalized ΔT/T
obtained for a pump-probe delay of τ = 2ps is depicted. The pump pulse is set at
400 nm (second harmonic of a titanium sapphire laser amplified at 5 kHz) and the
probe comes from a continuum generated in a sapphire crystal with the fundamental
frequency of the amplified laser [6].

The asymmetric spectral shape of the differential transmission spectrum in
Fig. 3, which is related to the shift and broadening of the plasmon, may have several
origins. As pointed out in [6, 12, 74], the interband transition induces a modifica-
tion of the real part of the dielectric function in this spectral region, the resonance
being far enough from the interband threshold to induce significant changes of the
corresponding imaginary part. As stressed in [12, 74], this is a strong indication that
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Fig. 3 Left panel: theoretical predictions of the normalized differential transmission for Ag2998

embedded in a transparent matrix as a function of the photon energy of the probe. Solid line:
Te = 600 K; dotted line: Te = 1200 K. Right panel: Normalized experimental spectrum of ΔT/T
of silver nanoparticles encapsulated in an alumina matrix for a pump-probe delay of 2 ps [6]
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intraband processes also play an important role. Indeed, as clearly seen in Fig. 2, the
conduction electrons contribution leads both to a shift and to a broadening. We can
therefore conclude that one needs to consider both the interband and the intraband
part on the same footing. Whereas this effect was previously taken into account in a
phenomenological way via a shifted and broadened Lorentzian shape, here we have
derived it directly from a quantum many-body approach based on the TDLDA at
finite temperature.

2.3 Phase-Space Methods: From Hartree to Wigner and Vlasov

As we have seen in Sect. 2.1, the most fundamental model for the quantum
N -body problem is the Schrödinger equation for the N -particle wave function
Ψ(r 1, r 2, . . . , r N , t). Unfortunately, the full Schrödinger equation cannot be solved
exactly except for very small systems. A drastic, but useful and to some extent
plausible, simplification can be achieved by neglecting two-body (and higher order)
correlations. This amounts to assume that the N -body wave function can be factored
into the product of N one-body functions:

Ψ(r 1, r 2, . . . , r N , t) = ψ1(r 1, t) ψ2(r 2, t) . . . ψN (r N , t). (31)

For fermions, a weak form of the exclusion principle is satisfied if none of the
wave functions on the right-hand side of Eq. (31) are identical.3

When the above assumption is made, the N -body Schrödinger equation reduces
to a set of one-particle equations, coupled through Poisson’s equation (time-dependent
Hartree model):

i�
∂ψα

∂ t
= − �

2

2m
Δψα − eφψα , α = 1 . . . Norb (32)

Δφ = e

ε

(
Norb∑

α=1

pα|ψα|2 − ni (r )

)
, (33)

where Norb ≥ N is the number of occupied orbitals, e and m are the absolute elec-
tron charge and mass, and ε is the dielectric constant; ni (r ) is the ion density, which
is supposed to be fixed and a continuous function of the position coordinate. This is

3 A stronger version of the exclusion principle requires that Ψ(r1, r2, . . . , rN , t) is antisymmetric,
i.e., that it changes sign when two of its arguments are interchanged. This can be achieved by
taking, instead of the single product of N wave functions as in Eq. (31), a linear combinations of
all products obtained by permutations of the arguments, with weights ±1 (Slater determinant) [75].
This is at the basis of Fock’s generalization of the Hartree model.
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known as the “jellium” hypothesis and is valid whenever the relevant length scales
are significantly larger that the ionic lattice spacing alatt ∼ 5Å. As mentioned in
Sect. 2, this is the case for semiconductor nanostructures, but not so for metals (see
Table 1); nevertheless, the jellium models still yields reasonably accurate results for
all but the smallest nano-objects.

The occupation probabilities pα (
∑Norb

α=1 pα = 1) are defined to describe a Fermi–
Dirac distribution at finite electron temperature, pα = [1 + exp(β(εα − μ))]−1,
where β = 1/kB Te, μ is the chemical potential, and εα is the single-particle energy
level. In practice, one first needs to obtain the ground-state equilibrium solution of
Eqs. (32)–(33), which amounts to determining the Norb occupation probabilities and
the corresponding energy levels and wave functions. Subsequently, the equilibrium
can be perturbed to study the electron dynamics. The numerical methods for the
dynamics are quite standard, as the Eq. (32) are basically one-particle Schrödinger
equations. We will not enter into the details of the numerical methods in this chapter:
a list of relevant works on the Schrödinger equation can be found in [66].

We now show that the Hartree equations can be written in a completely equivalent
form by making use of the Wigner transformation. The Wigner representation [34] is
a useful tool to express quantum mechanics in a phase-space formalism (for reviews
see [77–80]). The Wigner function is a function of the phase-space variables (x, v)
and time, which, in terms of the single-particle wave functions, reads as

f (x, v, t) =
Norb∑

α=1

m

2π�
pα

∫ +∞

−∞
ψ∗

α

(
x + λ

2
, t

)
ψα

(
x − λ

2
, t

)
eimvλ/� dλ. (34)

(we restrict our discussion to one-dimensional cases, but all results can easily be
generalized to three dimensions). It must be stressed that the Wigner function,
although it possesses many useful properties, is not a true probability density, as
it can take negative values. However, it can be used to compute averages just like
in classical statistical mechanics. For example, the expectation value of a generic
quantity A(x, v) is defined as

〈A〉 =
∫ ∫

f (x, v)A(x, v)dxdv∫ ∫
f (x, v)dxdv

(35)

and yields the correct quantum-mechanical value.4 In addition, the Wigner func-
tion reproduces the correct quantum-mechanical marginal distributions, such as the
spatial density:

4 For variables whose corresponding quantum operators do not commute (such as x̂ v̂), Eq. (35)
must be supplemented by an ordering rule, known as Weyl’s rule [80].
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n(x, t) =
∫ +∞

−∞
f (x, v, t) dv =

Norb∑

α=1

pα | ψα |2 . (36)

We also point out that, of course, not all functions of the phase-space variables
are genuine Wigner functions, as they cannot necessarily be written in the form
of Eq. (34). In general, although it is trivial to find the Wigner function given
the wave functions that define the quantum mixture, the inverse operation is not
generally feasible. Indeed, there are no simple rules to establish whether a given
function of x and v is a genuine Wigner function. For a more detailed discussion
on this issue, and some practical recipes to construct genuine Wigner functions,
see [81].

The Wigner function obeys the following evolution equation:

∂ f

∂t
+ v

∂ f

∂x
+

em

2iπ�2

∫ ∫
dλ dv′eim(v−v′)λ/�

[
φ

(
x + λ

2

)
− φ

(
x − λ

2

)]
f (x, v′, t) = 0 ,

(37)
where φ(x, t) is the self-consistent electrostatic potential obtained self-consistently
from Poisson’s equation (33).

Developing the integral term in Eq. (37) up to order O(�2) we obtain

∂ f

∂t
+ v

∂ f

∂x
+ e

m

∂φ

∂x

∂ f

∂v
= e�

2

24m3

∂3φ

∂x3

∂3 f

∂v3
+ O(�4). (38)

In the limit � → 0 one recovers the classical Vlasov equation, well known from
plasma physics (see Fig. 1). The Vlasov–Poisson system has been used to study the
dynamics of electrons in metal clusters and thin metal films [51, 18–20]. It is appro-
priate for large excitation energies, for which the electrons’ de Broglie wavelength
is relatively small, thus reducing the importance of quantum effects in the electron
dynamics. Nevertheless, for metallic nanostructures at room temperature, the equi-
librium must be given by a Fermi–Dirac distribution, because the Fermi temperature
is very high (see Table 1). For semiconductor nanostructures, TF ∼ 10 − 50K,
so that a Maxwell–Boltzmann equilibrium is sometimes appropriate for moderate
temperatures.

The Wigner equation must be coupled to the Poisson’s equation for the electric
potential:

∂2φ

∂x2
= −e

ε
[ni (x) − n(x, t)] . (39)

The resulting Wigner–Poisson (WP) system has been extensively used in the
study of quantum transport [82–84]. Exact analytical results can be obtained by
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linearizing Eqs. (37) and (39) around a spatially homogeneous equilibrium given
by n0 f0(v) (Maxwell–Boltzmann or Fermi–Dirac distribution), where n0 = ni =
const. is the uniform equilibrium density. By expressing the fluctuating quantities
as a sum of plane waves exp(ikx − iωt) with frequency ω and wave number k, the
dispersion relation can be written in the form ε(k, ω) = 0, where the “dielectric
constant” ε reads, for the WP system,

εWP(ω, k) = 1 + mω2
p

n0k

∫
f0(v + �k/2m) − f0(v − �k/2m)

�k(ω − kv)
dv, (40)

or equivalently

εWP(ω, k) = 1 − ω2
p

n0

∫
f0(v)

(ω − kv)2 − �2k4/4m2
dv . (41)

This is just the Lindhard [85] dispersion relation, well known from solid-state
physics. From Eq. (40), one can recover the Vlasov–Poisson dispersion relation by
taking the classical limit � → 0

εVP(ω, k) = 1 + ω2
p

n0k

∫
∂ f0/∂v

ω − kv
dv. (42)

The equivalence of the Hartree and Wigner–Poisson methods can be easily
proven by comparing the linear results. For the Hartree equations (32), we linearize
around a homogeneous equilibrium given by plane waves:

ψα = √
n0 exp

(
i
mu0α

�
x
)

, (43)

each with occupation number pα and energy εα = mu2
0α/2. The Hartree dielectric

constant is found to be

εH(ω, k) = 1 −
Norb∑

α=1

pα

ω2
p

(ω − ku0α)2 − �2k4/4m2
, (44)

which is a discrete form of the Wigner–Poisson dispersion relation (41).

2.3.1 Example — Ultrafast Electron Dynamics in Thin Metal Films

Several experiments have shown [2, 3] that electron transport in thin metal films
occurs on a femtosecond timescale and involves ballistic electrons traveling at the
Fermi velocity of the metal vF . More recently, a regime of low-frequency nonlinear
oscillations (corresponding to ballistic electrons bouncing back and forth on the film
surfaces) was measured in transient reflection experiments on thin gold films [86].
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These findings were corroborated by accurate numerical simulations based on
the one-dimensional Vlasov–Poisson equations [18–20]. The electrons are initially
prepared in a Fermi–Dirac equilibrium at finite (but small) temperature. They are
subsequently excited by imposing a constant velocity shift δv = 0.08vF to the
initial distribution, which is a rather strong excitation. This scenario is appropri-
ate when no linear momentum is transferred parallel to the plane of the surface
(i.e., q‖ = 0) and is relevant to the excitation of the film with optical pulses [87].
For q‖ = 0, only longitudinal modes (volume plasmon with ω = ωp) can be
excited.

As a reference case, we studied a sodium film with initial temperature Te =
0.008TF � 300 K and thickness L � 120 Å. The time evolution of the thermal Eth

and center-of-mass Ecm energies was analyzed (Fig. 4). During an initial rapidly
oscillating phase, Ecm is almost entirely converted into thermal energy (Landau
damping). After saturation, a slowly oscillating regime appears, with period equal
to 50ω−1

p ≈ 5.3fs, where ωp = (e2n/mε0)1/2 is the plasmon frequency. This period
is close to the time of flight of electrons traveling at the Fermi velocity and bouncing
back and forth on the film surfaces (further details are provided in our previous work
[18–20]).

The phase-space portrait of the electron distribution, shown in Fig. 5, clearly
reveals that the perturbation starts at the film surfaces and then proceeds inward at
the Fermi velocity of the metal. The structure formation at the Fermi surface, which
has spread over the entire film for ωpt > 150, is responsible for the increase of the
thermal energy (and thus the electron temperature) observed in Fig. 4. As no cou-
pling to an external environment (e.g., phonons) is present, this excess temperature
cannot be dissipated.

Quantum simulations of the electron dynamics using the Wigner–Poisson system
were performed more recently: as expected, the Vlasov results were recovered in
the large excitation regime δv > 0.08vF . For smaller excitations, a different regime
appears, in which the ballistic oscillations described above are no longer observed.
Further work is in progress on this issue [88].

Fig. 4 Time evolution of the
thermal, potential, and
center-of-mass energies of
the electron population in a
thin sodium film
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Fig. 5 Phase-space portrait of the electron distribution. Velocity is normalized to the Fermi veloc-
ity, and space to the Thomas–Fermi screening length L F = vF/ωp

2.3.2 Beyond the Mean-Field

The mean-field approach described above is appropriate to describe the electron
dynamics on very short timescales (<100fs). On a longer timescale (0.1–1ps), the
injected energy is redistributed among the electrons via electron–electron (e–e) col-
lisions. Electron–phonon (e–ph) thermalization (i.e., coupling to the ionic lattice)
is generally supposed to occur on even longer timescales. However, the results of
[5, 89] on thin gold films have shown that nonequilibrium electrons start interacting
with the lattice earlier than expected, so that a clear-cut separation between e–e and
e–ph relaxation is not entirely pertinent.

The phase-space approach is particularly well suited to include corrections that
go beyond the mean-field picture. This can be done with relative ease for semiclas-
sical models (Vlasov), by using a Boltzmann-like e–e collision integral that respects
Pauli’s exclusion principle (Ühling–Uhlenbeck model) [90]:

(
∂ f

∂t

)

UU

=
∫

d3p2dΩ

(2π�)3
σ (Ω)|v12|( f1 f2 f 3 f 4 − f3 f4 f 1 f 2) , (45)

where v12 is the relative velocity of the colliding particles 1 and 2, σ (Ω) is the
differential cross-section depending on the scattering angle Ω, and indices 3 and 4
label the outgoing momenta, fi = f (r , pi , t) and f i = 1 − fi/2. This collision
term is similar to the well-known classical Boltzmann collision term but for Pauli
blocking factors f i f j . As known from solid-state physics, this blocking factor plays
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a dramatic role for electronic systems [75]. At Te = 0K, all collisions are Pauli
blocked and the collisional mean-free path of the electrons becomes infinite. But if
the system becomes excited, phase-space opens up and activates the collision term.
The effect of the above e–e collision term on the semiclassical Vlasov dynamics in
metal clusters was investigated numerically in [91].

It is conceptually harder to include collisions in fully quantum models. A sig-
nificant constraint is that nonunitary corrections to the Wigner equation should be
written in “Lindblad form” [92], which guarantees that the evolved Wigner function
corresponds to a positive-definite density matrix.

The Ühling–Uhlenbeck collision term (45) is a complicated nonlinear integral,
which is difficult to implement in a numerical code. It is therefore useful to con-
struct some simplified collision terms that are more easily amenable to numerical
treatment. In the following, we briefly illustrate two simple models of e–e and e–ph
collisions that we have employed in our previous works.

2.3.2.1 Electron-Electron Collisions

To model e–e collisions, a relaxation term is added to the right-hand side of the
Vlasov or Wigner equation:

(
∂ f

∂t

)

e−e

≡ −νee(Te)( f − f∞), (46)

where νee is the average e–e collision rate and f∞(x, v) is a Fermi–Dirac distri-
bution. The idea behind this model is that the electron distribution will eventually
relax, on a timescale of the order ν−1

ee , toward a Fermi–Dirac equilibrium f∞ with
total energy equal to that of the initial electron distribution f (x, v, t = 0+), includ-
ing of course the initial excitation energy. For electrons near the Fermi surface, the
e–e collision rate can be written as [93]

νee(Te) = a(kB Te)2, (47)

where a is a (dimensional) proportionality constant. The latter has been esti-
mated from numerical simulations of the electron dynamics in sodium clusters
[91], yielding a � 0.4 fs−1eV−2, which is also compatible with the analyti-
cal prediction given by the random phase approximation [93]. The electron tem-
perature is computed instantaneously during the simulation and plugged into the
expression for the collision rate (47). It is important to underline that the above
model for e–e collisions, though simple, is completely self-contained and requires
no additional ad hoc parameters. The model has been applied to the electron
dynamics in thin metal films. The slow ballistic oscillations of Fig. 4 are still
observed, although they are damped on a timescale of the order of 500ω−1

pe � 50fs
(see Fig. 6).
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Fig. 6 Evolution of the
thermal energy for a case
with e–e collisions and
L = 100L F � 120Å

2.3.2.2 Electron–Phonon Collisions

By coupling to the ionic lattice, the electrons progressively relax to a thermal dis-
tribution with a temperature equal to that of the lattice Ti . This relaxation time is
generally termed τ1 in the semiconductor literature. In addition, the lattice acts as an
external environment for the electrons, leading to a loss of quantum coherence over a
timescale τ2 (decoherence time). The relaxation and decoherence times correspond,
respectively, to the decay of diagonal and nondiagonal terms in the density matrix
describing the electron population.

Such environment-induced decoherence can be modeled, in the Wigner represen-
tation, by an appropriate friction-diffusion term [94]:

(
∂ f

∂t

)

e−ph

= 2γ
∂(v f )

∂v
+ Dv

∂2 f

∂v2
+ Dx

∂2 f

∂x2
, (48)

where γ is the relaxation rate (inverse of the relaxation time τ1), and Dv , Dx are
diffusion coefficients in velocity and real space, respectively, which are related to
the decoherence time τ2 and depend on the lattice temperature Ti . The effect of the
diffusive terms is to smooth out the fine structure of the Wigner function, thus sup-
pressing interference phenomena, which are a typically quantum effect. Finally, we
recall that, in order to preserve the positivity of the density matrix associated to the
Wigner distribution function, the e–ph collision term (48) must be in Lindblad form
[92]. This is automatically achieved [95] if the coefficients respect the inequality
Dv Dx ≥ γ 2

�
2/4m2.

2.4 Hydrodynamical Models: From Micro to Macro

Despite its considerable interest, the Wigner–Poisson (WP) formulation presents
some intrinsic drawbacks : (i) it is a nonlocal, integro-differential system and
(ii) its numerical treatment requires the meshing of the whole phase-space. More-
over, as is often the case with kinetic models, the Wigner–Poisson system gives more
information than one is really interested in. For these reasons, it would be useful to
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obtain an accurate reduced model which, though not providing the same detailed
information, is still able to reproduce the main features of the physical system under
consideration.

In this section, we will derive an effective Schrödinger–Poisson (SP) system,
which, in an appropriate limit, reproduces the results of the kinetic WP formulation
[96]. In order to obtain the effective SP system, we will first derive a system of
reduced hydrodynamic (or fluid) equations by taking moments of the WP system. It
will be shown that the pressure term appearing in the fluid equations can be decom-
posed into a classical and a quantum part. With some reasonable hypotheses on
the pressure term, the fluid system can be closed. For simplicity of notation, only
one-dimensional problems will be considered, but the results can be easily extended
to higher dimensions.

In order to derive a fluid model, we take moments of Eq. (37) by integrating over
velocity space. Introducing the standard definitions of density, mean velocity, and
pressure

n =
∫

f dv , u = 1

n

∫
f v dv , P = m

(∫
f v2dv − nu2

)
, (49)

it is obtained

∂ n

∂ t
+ ∂ (nu)

∂ x
= 0 , (50)

∂ u

∂ t
+ u

∂ u

∂ x
= e

m

∂ φ

∂ x
− 1

mn

∂ P

∂ x
. (51)

We immediately notice that, surprisingly, Eqs. (50)–(51) do not differ from the
ordinary evolution equations for a classical fluid. It can be shown, however, that
quantum effects are actually hidden in the pressure term, which may be decomposed
into a classical and a quantum part.

By using the definition of the Wigner function (34) and representing each state
in terms of its amplitude

√
nα and phase Sα

ψα(x, t) =
√

nα(x, t) exp (i Sα(x, t)/�), (52)

we obtain that P = PC + P Q . The classical part of the pressure can be
written as

PC = mn

⎡

⎣
∑

α

pα

nα

n
u2

α −
(
∑

α

pα

nα

n
uα

)2
⎤

⎦ ≡ mn(〈u2
α〉 − 〈uα〉2), (53)

where muα = ∂Sα/∂x [the uα’s should not be mistaken with the global mean veloc-
ity u defined in Eq. (49)]. This is the standard expression for the pressure as velocity
dispersion, thus justifying the term “classical” pressure.
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The quantum part of the pressure is written as

P Q = �
2

2m

∑

α

pα

((
∂

√
nα

∂ x

)2

− √
nα

∂2√nα

∂ x2

)
. (54)

It can be shown that, for distances larger that the Thomas–Fermi screening length
L F , one can replace nα with n, the total density as defined in Eq. (49). In order to
close the fluid system (50)–(51) one still has to express the classical pressure in
terms of the density n. This is the standard procedure adopted in classical hydro-
dynamics: the relation PC (n) is the equation of state and depends on the particular
conditions of the system, notably its temperature.

With these hypotheses, the Eq. (51) reduces to

∂ u

∂ t
+ u

∂ u

∂ x
= e

m

∂ φ

∂ x
− 1

m

∂ W

∂ x
+ �

2

2m2

∂

∂x

(
∂2(

√
n)/∂ x2

√
n

)
, (55)

where we have defined the effective potential

W (n) =
∫ n dn′

n′
d PC (n′)

dn′ . (56)

Equations (50) and (55) constitute the quantum hydrodynamical approximation
to the full Wigner (or Hartree) equation.

It is now possible to combine Eqs. (50) and (55) into an effective nonlinear
Schrödinger equation. To this purpose, let us define the effective wave function

Ψ =
√

n(x, t) exp (i S(x, t)/�) , (57)

with S(x, t) defined according to mu(x, t) = ∂ S(x, t)/∂ x . We obtain that Ψ(x, t)
satisfies the equation

i�
∂Ψ

∂ t
= − �

2

2m

∂2Ψ

∂ x2
− eφΨ + WΨ . (58)

By linearizing Eqs. (50) and (55) around a homogeneous equilibrium, we obtain
the following dispersion relation

ω2 = ω2
p + v0

2k2 + �
2k4

4m2
, (59)

where mv2
0 = (d PC/dn)n=n0 . It can be proven that, by an appropriate choice of

the equation of state PC (n), Eq. (59) reproduces correctly the leading terms of the
Hartree or Wigner dispersion relation.

To summarize, we have shown that, under appropriate conditions, the Hartree
or Wigner models can be reduced to a set of two hydrodynamical equations (50)
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and (55), or, equivalently, to a single nonlinear Schrödinger equation (58). The two
hypotheses used for this reduction were that (i) all quantities vary on a length scale
larger than L F and (ii) the equation of state for the classical pressure is PC = PC (n)
(standard fluid closure).

2.4.1 Example — Thin Metal Films

We have studied the electron dynamics in a thin metal film using the above quantum
hydrodynamical model [97]. A preliminary result is shown in Fig. 7, where we plot
the evolution of the thermal and potential energies against time. In order to compare
to the Vlasov simulations described in Sect. 2.3, the hydrodynamic equations are
solved in the semiclassical limit, i.e., using a small value of the Planck constant
normalized to EF/ωp (note, however, that here the initial excitation δv = 0.22vF

is larger compared to the case of Fig. 4, where δv = 0.08vF ). The hydrodynamic
results display some coherent oscillations at high frequency, which are a typical sig-
nature of quantum effects. Nevertheless, the initial increase of the thermal energy is
clearly captured and the subsequent ballistic oscillations are still visible, particularly
on the potential energy.
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Fig. 7 Time evolution of the thermal and potential energies (normalized to EF ) of the electron
population, obtained using a quantum hydrodynamics model

3 Spin Dynamics

The dynamics of magneto-optical processes in metallic nanostructures depends on
the temporal and spatial characteristics that are being investigated. Short timescale
(t < 10−12 s) has only been explored recently. In 1996, the group of Jean-Yves
Bigot in Strasbourg highlighted the existence of ultrafast demagnetization processes
(within less than a hundred femtoseconds) induced by femtosecond laser pulses in
ferromagnetic thin films [26–28]. These demagnetization processes are not yet fully
understood.



Collective Electron Dynamics 29

From a theoretical point of view, very little is known on the time-dependent
magneto-optical response of metallic nanostructures to an ultrafast optical pulse.
The main difficulty is to provide an adequate description of the interplay between
electronic and spin degrees of freedom in the metal. So far, only two theoretical
models have been proposed to explain this effect [29, 30]. These works are based on
two different mechanisms: in [29], the spin–orbit coupling is invoked, whereas in
[30] phonon or impurity mediated spin-flip scattering is privileged. Unfortunately,
the parameters employed in [29] are not realistic and the model developed in [30]
is a phenomenological approach that does not allow quantitative predictions. From
the above considerations it follows that there is a need for the development of effi-
cient theoretical models able to explain in a quantitative manner the experimental
findings.

A proper treatment of spin dynamics requires an extension of our model (TDLDA)
to include spin degrees of freedom. In the following, the formalism of the time-
dependent local-spin-density approximation (TDLSDA) in the linear regime
(including also its extension to finite temperature) is presented. A second part will
be devoted to the nonlinear dynamics.

3.1 Linear Response: Local-Spin-Density Approximation

The generalization of the linear TDLDA to spin-polarized electron systems has been
performed by Rajagopal [98]. In the following we provide the basic equations of this
approach including its extension to finite temperature.

Within the framework of DFT one can calculate the spin-density matrix nσσ ′(r )
defined as

nσσ ′(r ) = 〈0|ψ̂+
σ (r )ψ̂σ ′(r )|0〉, (60)

where ψ̂+
σ (r ) and ψ̂σ (r ) are the wave field operators corresponding to the creation

and annihilation of an electron with spin σ at position r and |0〉 is the ground state of
the system. When the system is subjected to a small local spin-dependent external
potential δV σσ ′

ext (r ; ω) (this quantity describes the coupling of the charge and spin
of the electrons to external electric and magnetic fields) the spin-density response
function is defined through the equation:

δnσσ ′(r ; ω) =
∑

σ1σ2

∫
χσσ ′,σ1σ2 (r , r ′; ω) δV σ1σ2

ext (r ′; ω) dr ′ . (61)

For the sake of simplicity, we restrict ourself to the case of collinear magnetism,
i.e., to the case of a uniform direction of magnetization. This restriction leads to
a diagonal spin-density matrix (nσσ ′ = nσ δσσ ′) and simplified expressions. The
spin-density response function defined in Eq. (61) reduces to
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δnσ (r ; ω) =
∑

σ ′

∫
χσσ ′(r , r ′; ω) δV σ ′

ext(r
′; ω) dr ′, (62)

which can be rewritten as

δnσ (r ; ω) =
∑

σ ′

∫
χ0

σσ ′(r , r ′; ω) δV σ ′
eff (r

′; ω) dr ′, (63)

with

δV σ
eff(r ; ω) = δV σ

ext(r ; ω)

+
∑

σ ′

∫ {
e2/4πε0

|r − r ′| + f σσ ′
xc (r , r ′; ω)

}
δnσ ′(r ′; ω) dr ′ . (64)

In the above expression the function f σσ ′
xc (r , r ′; ω) is the Fourier transform of

the time-dependent kernel defined by f σσ ′
xc (r , t ; r ′, t ′) ≡ δV σ

xc(r , t)/δnσ ′ (r ′, t ′), and
χ0

σσ ′(r , r ′; ω) is the non-interacting retarded spin-density correlation function. For
spin-polarized electron systems the exchange–correlation potential is defined as

V σ
xc(r ) =

[
∂

∂nσ

{nωxc(n+, n−)}
]

n+=n+(r );n−=n−(r )

, (65)

where Ωxc[n+, n−] = ∫
n(r )ωxc (n+(r ), n−(r )) dr is the exchange-correlation

thermodynamic potential and ωxc the exchange–correlation thermodynamic poten-
tial per particle of the homogeneous electron gas calculated at the local density n
and magnetization m = n+ − n−. By noting that

∂

∂nσ

{nωxc(n+, n−)} = ∂

∂n
{nωxc(n, m)} + σ

∂

∂m
{nωxc(n, m)} ,

the expression (65) can be rewritten as [99]

V σ
xc(r ) =

[
∂

∂n
{nωxc(n, m)}

]

n=n(r );m=m(r )

+ σμB Bxc(r ) , (66)

where Bxc(r ) = μ−1
B

[
∂

∂m {nωxc(n, m)}]
n=n(r );m=m(r )

is the exchange–correlation
magnetic field acting on spin, and μB = e�/(2m) is the Bohr magneton. This is an
internal magnetic field. The response functions χ0 and χ are related by an integral
equation (to be more precise, due to the spin degree of freedom, it is a matrix integral
equation):
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χσσ ′(r , r ′; ω) = χ0
σσ ′(r , r ′; ω) +

∑

σ1σ2

∫ ∫
χ0

σσ1
(r , r ′′; ω)

× K σ1σ2 (r ′′, r ′′′; ω) χσ2σ ′(r ′′′, r ′; ω) dr ′′dr ′′′, (67)

with the residual interaction defined by

K σ1σ2 (r , r ′; ω) = e2

4πε0|r − r ′|δσ1σ2 + f σ1σ2
xc (r , r ′; ω). (68)

As for TDLDA, in the adiabatic local-density approximation (ALDA) the exchange–
correlation kernel is frequency-independent and local and reduces to

f σσ ′
xc (r , r ′) =

[
∂2[nωxc(n, m)]

∂nσ ∂nσ ′

]

n=n(r );m=m(r )

δ
(
r − r ′) . (69)

It should be mentioned that the functional ωxc in the above expression should be
the same as the one used in the calculation of the ground state [see Eq. (65)]. By
using the same field-theory techniques employed previously for TDLDA (see Sect.
2.2), one can show that the free response function reads

χ0
σσ ′(r , r ′; ω; Te) = δσσ ′

∑

k

f σ
k φσ∗

k (r )φσ
k (r ′) Gσ

+(r , r ′; εσ
k + �ω; Te)

+
∑

k

f σ
k φσ

k (r )φσ∗
k (r ′) Gσ∗

+ (r , r ′; εσ
k − �ω; Te) , (70)

where φσ
k (r ) and εσ

k are the one-electron Kohn–Sham wave functions and energies,
respectively. Gσ

+ is the one-particle retarded Green’s function for the spins σ and

f σ
k = [1 + exp

{
(εσ

k − μ)/kB Te
}]−1

. Similarly to TDLDA, we have assumed that
the residual interaction (68) is temperature independent. Thus, it is consistent with
the use of ωxc(n, m) = εxc(n, m) in the calculation of the ground-state properties.

From the above formalism one can compute the dipolar absorption cross-section

σ (ω; Te) = ω

ε0c
Im [α (ω; Te)] , (71)

where α is the frequency-dependent dipole electric polarizability defined as

α (ω; Te) =
∫ [

δn+(r ; ω; Te) + δn−(r ; ω; Te)
]

δVext(r ; ω) dr . (72)

By analogy, one defines a quantity which is constructed from the local magneti-
zation (instead of the local density)

σm (ω; Te) = ω

ε0c
Im [αm (ω; Te)] , (73)
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where αm is the frequency-dependent dipole magnetic polarizability defined as

αm (ω; Te) =
∫ [

δn+(r ; ω; Te) − δn−(r ; ω; Te)
]

δVext(r ; ω) dr . (74)

On can show that σm fulfils the following sum rule

∫
σm (ω; Te) dω = 2π2 M(Te)

c
, (75)

where M = N+ − N− is the total magnetization of the system (N+ being the
number of spins up and N− the number of spins down). It is worth mentioning that
M is generally temperature dependent [100].

3.2 Nonlinear Response: Phase-Space Methods

In order to investigate the nonlinear regime of the charge and spin dynamics, a
phase-space approach is particularly interesting. In this paragraph, we will construct
a Wigner equation that includes spin effects in the local-density approximation and
show that its classical limit takes the form of a Vlasov equation.

The starting point for the derivation is the time-dependent Kohn-Sham (KS)
equations described in Sect. 3.1. In terms of the Pauli 2-spinors

Ψi (r, t) =
(

Ψ
↑
i (r, t)

Ψ
↓
i (r, t)

)
,

the KS equations can be written as

i�
∂Ψi

∂t
=
[(

− �
2

2m
∇2 + V (r, t)

)
I + μBσ · B(r, t)

]
Ψi (r, t) (76)

where V (r, t) = Vext(r, t) + VH (r, t) + V 0
xc(r, t), μB is Bohr’s magneton, σ =

(σx , σy, σz) are the 2 × 2 Pauli matrices, and I is the identity matrix. Here, Vext

is an external potential (e.g., ionic jellium, external electric field, ...), VH is the
Hartree potential that obeys Poisson’s equation, and V 0

xc is the scalar part of the
exchange–correlation potential. The magnetic field B = Bext + Bxc is composed of
an external part and an “internal” part that stems from the exchange and correlation
energy [see Eq. (66)]. In the so-called collinear approximation, the latter reduces to
Bxc = Bxc ẑ.
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Equation of Motion for the Density Matrix

By defining the density matrix

ρηη′
(r, r′) =

∑

i

Ψ
η

i (r)Ψη′∗
i (r′), (77)

where η =↑,↓, the KS equations (76) can be written in the following compact form
(Von Neumann equation):

i�
∂ρ

∂t
= [H, ρ], (78)

where

ρ =
(

ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
; H =

(
h↑↑ h↑↓

h↓↑ h↓↓

)
. (79)

The only nondiagonal terms in the Hamiltonian come from the external or inter-
nal magnetic field B.

We now introduce the following basis transformation for the Hamiltonian:

H = h0I + h · σ , (80)

where h = (hx , hy, hz
)

and

h0 = h↑↑ + h↓↓

2
, hx = h↑↓ + h↓↑

2
(81)

hz = h↑↑ − h↓↓

2
, hy = h↓↑ − h↑↓

2i
. (82)

For the Hamiltonian of Eq. (76), we have

h0(r ) = − �
2

2m
∇2 + V (r, t) (83)

hα(r ) = μB Bα(r, t), α = x, y, z. (84)

The same transformation (with identical notation) is also applied to the density
matrix. With these definitions, the equations of motion for ρ0 and ρα read as

i�∂tρ0 = [h0, ρ0] +
∑

α=x,y,z

[hα, ρα] (85)

i�∂tρα = [h0, ρα] + [hα, ρ0]. (86)
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3.2.1 “Spin” Wigner and Vlasov Equations

By making use of the Wigner transformation

f0(r, v, t) = m

2π�

∫
dλρ0

(
r − λ

2
, r + λ

2

)
eimvλ/�, (87)

fα(r, v, t) = m

2π�

∫
dλρα

(
r − λ

2
, r + λ

2

)
eimvλ/�, (88)

one can easily obtain the equations of motion for the Wigner functions:

∂

∂t
f0 + v

∂

∂r
f0 −

m

2iπ�2

∫
dλ

∫
dv′eim(v−v′)λ/�

[
V

(
r + λ

2

)
− V

(
r − λ

2

)]
f0(r, v′, t) −

∑

α

mμB

2iπ�2

∫
dλ

∫
dv′eim(v−v′)λ/�

[
Bα

(
r + λ

2

)
− Bα

(
r − λ

2

)]
fα(r, v′, t) = 0,

∂

∂t
fα + v

∂

∂r
fα −

m

2iπ�2

∫
dλ

∫
dv′eim(v−v′)λ/�

[
V

(
r + λ

2

)
− V

(
r − λ

2

)]
fα
(
r, v′, t

)−
mμB

2iπ�2

∫
dλ

∫
dv′eim(v−v′)λ/�

[
Bα

(
r + λ

2

)
− Bα

(
r − λ

2

)]
f0(r, v′, t) = 0.

The corresponding Vlasov equations are obtained in the classical limit � → 0:

∂

∂t
f0 + v

∂

∂r
f0 − 1

m

∂V

∂r
∂ f0

∂v
− μB

m

∑

α

∂ Bα

∂r
∂ fα
∂v

= 0, (89)

∂

∂t
fα + v

∂

∂r
fα − 1

m

∂V

∂r
∂ fα
∂v

− μB

m

∂ Bα

∂r
∂ f0

∂v
= 0, (90)

with α = x, y, z.
Within the collinear approximation, the equations for α = x, y vanish. In this

case, it is more convenient revert to the original representation and use

f↑ = f0 + fz,

f↓ = f0 − fz .
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The corresponding Vlasov equations then become

∂

∂t
f↑ + v

∂

∂r
f↑ − 1

m

(
∂V

∂r
+ μB

∂ Bz

∂r

)
∂ f↑
∂v

= 0, (91)

∂

∂t
f↓ + v

∂

∂r
f↓ − 1

m

(
∂V

∂r
− μB

∂ Bz

∂r

)
∂ f↓
∂v

= 0. (92)

The above Wigner and Vlasov equations can be used to study the nonlinear spin
dynamics in a ferromagnetic nanoparticle or thin film, using numerical techniques
similar to those employed for the electron dynamics. In their present form, these
equations preserve the total spin and thus cannot be used to describe the loss of
magnetization observed in experiments [26–28]. A proper generalization, along the
lines of the e–e and e–ph collision operators detailed in Sect. 2.3, would be necessary
to account for these effects.

4 Numerical Example: The Nonlinear Many-Electron Dynamics
in an Anharmonic Quantum Well

In order to illustrate qualitatively the practical implementation of the models
described in the previous sections, we concentrate on a specific – and relatively sim-
ple – example. We consider an electron population confined in a one-dimensional
anharmonic well defined by the potential

Vconf(x) = 1

2
ω2

0m∗x2 + 1

2
K x4, (93)

where m∗ is the effective electron mass. The frequency ω0 can be related to a ficti-
tious homogeneous positive charge of density n0 via the relation ω2

0 = e2n0/m∗ε.
The total potential seen by the electrons is the sum of the confining potential Vconf

and the Hartree potential, which obeys Poisson’s equation

∂2VH

∂ x2
= e2

ε

∫ ∞

−∞
f dv , (94)

where e is the absolute electron charge and ε is the effective dielectric constant. As
initial condition, we take a Maxwell–Boltzmann distribution with Gaussian density
profile

f0(x, v) = ne√
2πkB Te/m∗

exp

(
−m∗v2 + m∗ω2

0x2

2kB Te

)
, (95)

with temperature Te and peak density ne.
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The electron dynamics is mainly determined by two dimensionless parameters:
(i) the “filling fraction” η = ne/n0 = ω2

p/ω
2
0, which is a measure of self-consistent

effects (in the limit case η = 0, corresponding to very dilute electron densities,
the Hartree potential is negligible); and (ii) the normalized Planck constant H =
�ω0/kB Te, which determines the importance of quantum effects. Notice that a small
value of H corresponds to a large electron temperature.

We use typical parameters for semiconductor quantum wells [101, 102]: effec-
tive electron mass and dielectric constant m∗ = 0.067me and ε = 13ε0; volume
density n0 = 1016 cm−3, oscillator energy �ω0 = 3.98 meV, and oscillator length
Lho = √

�/m∗ω0 � 17nm. For η = 1, this yields a maximum surface den-
sity for the electrons ns = 4.64 × 1010 cm−2 and a maximum Fermi temperature
TF = 29.3 K. A low electron temperature Te � 46 K then yields H � 1, whereas at
room temperature Te � 300 K one has H � 0.15.

The electron dynamics is excited by shifting the electron density of a
finite distance δx = Lho. We will primarily be interested in the relaxation of the
electric dipole, defined as the center of mass of the electron population:
d(t) = ∫ ∫ f xdxdv/

∫ ∫
f dxdv and of the average kinetic energy Ekin = 1

2

∫ ∫
f

m∗v2dxdv/
∫ ∫

f dxdv.

Fig. 8 Evolution of the electric dipole (in units of Lho = 17 nm) obtained from the Wigner–Poisson
model, for several values of η and the electron temperature. Time is normalized to the oscillator
frequency
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First, we present results obtained from the numerical resolution of the Wigner
equation (37), coupled to Poisson’s equation (94). The results were obtained with a
numerical code that combines the split-operator method with fast Fourier transforms
in the velocity coordinate [103]. We explore the electron dynamics for different
values of the two relevant dimensionless parameters, H and η. The anharmonicity
parameter appearing in the confining potential (93) is fixed to K = 0.1 (in units
where � = m∗ = ω0 = 1). If the confinement were purely harmonic (i.e., K = 0),
the dipole would simply oscillate at the frequency ω0 irrespective of the value of
the filling fraction. This result goes under the name of Kohn’s theorem [36], and we
have checked that it holds for our numerical simulations. When the confinement is
not harmonic, the dipole should decay because of phase mixing effects.

The numerical results are shown in Fig. 8 (dipole) and Fig. 9 (kinetic energy).
The fast oscillations correspond to the center of mass of the electron gas oscillating
in the anharmonic well. For low electron densities and large temperatures (η =
0.1, Te = 300 K), the dipole relaxes to the bottom of the well, d � 0, whereas the
kinetic energy relaxes to a constant asymptotic value. This is a semiclassical regime
where the energy spectrum is almost continuous: the observed relaxation is due to
phase mixing effects.

Fig. 9 Evolution of the kinetic energy (normalized to �ω0 = 3.98 meV) obtained from the Wigner–
Poisson model, for several values of η and the electron temperature. Time is normalized to the
oscillator frequency
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Decreasing the temperature (Te = 46 K) while keeping the density low (η =
0.1) produces a revival that occurs after the kinetic energy has initially relaxed.
This is a typically quantum effect resulting from the discrete nature of the energy
spectrum. The revival is clearly visible on the kinetic energy, but not so much on
the dipole. When the electron density is large (η = 1), self-consistent electron–
electron interactions (Hartree potential) prevent the dipole and the kinetic energy
from relaxing completely, even at large temperatures.

Next, we have added a dissipative term to the Wigner equation, in order to model
electron–phonon (e–ph) collisions. This model has been discussed in Sect. 2.3.
The relaxation rate is chosen to be γ = 0.001ω0, yielding a realistic relaxation
time τ1 = γ −1 � 165ps. The velocity–space diffusion coefficient is Dv = γ vth ,
where the thermal velocity is vth = √

kB Te/m∗. The relaxation time τ2 depends
on the velocity scale: for instance, a velocity scale Δv is damped on a timescale
τ2 = τ1Δv/vth . Therefore, for velocity scales smaller than the thermal velocity,
the decoherence time is always smaller than the relaxation time, in accordance with
experimental findings.

We simulated the low-temperature scenario (Te = 46 K) in the presence of e–ph
collisions and observed that the revival occurring in the kinetic energy for η = 0.1
is now suppressed (see Fig. 10). For large densities, however, the coherence of the

Fig. 10 Evolution of the kinetic energy (top panels) and electric dipole (bottom panels), from the
Wigner–Poisson model including e–ph collisions. Same normalizations as in Figs. 8 and 9
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electron motion is not lost, and the relaxation of the dipole and the kinetic energy is
only marginally faster compared to the collisionless regime.

Finally, we want to consider the zero temperature case. For doing this, we resort
to the hydrodynamical model described in Sect. 2.4. The relevant dimensionless
parameters now are η and rs0, the normalized Wigner–Seitz radius computed with
the background density n0. For n0 = 1016 cm−3, one has rs0 = 2.8. In Fig. 11 we
plot the evolution of the electric dipole for different values of the filling fraction.
Now, even for low electron densities, the dipole oscillates indefinitely without any
appreciable decay. For larger electron densities, the motion is even more regular.
It appears, therefore, that the dynamics becomes more and more regular as the
electron temperature decreases, i.e., when quantum effect become more important.
As mentioned above, this is essentially due to phase mixing effect, which become
increasingly important in the semiclassical regime, where the energy levels are
almost continuous.
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Fig. 11 Evolution of the electric dipole for η = 1 (left frame) and η = 0.1 (right frame), obtained
from the quantum hydrodynamic model at Te = 0

5 Conclusions and Perspectives

In this review chapter, we have presented some of the most common theoretical
models used to describe the charge and spin dynamics in metallic and semiconductor
nanostructures. Three levels of description have been identified (see Fig. 1): (i) the
full quantum N -body problem, which can only be addressed for small systems by
using, for instance, the Configuration Interaction (CI) method; (ii) mean-field mod-
els (Hartree and Wigner) and their generalizations to include exchange and correla-
tions (Hartree–Fock, density functional theory); and (iii) quantum hydrodynamical
models, which describe the electron dynamics via a small number of macroscopic
variables, such as the density and the average velocity.

Each of these quantum-mechanical approaches has its classical counterpart: clas-
sical N -body models have been developed for molecular dynamics computations, as
well as for gravitational N -body problems; classical mean-field models are ubiq-
uitous in plasma physics (Vlasov–Maxwell equations) and in the study of self-



40 G. Manfredi et al.

gravitating objects such as star clusters, galaxies, or even the entire universe; classi-
cal hydrodynamics hardly needs mentioning, as it is in itself an extremely wide field
of research.

For each approach, we have stressed the difference between the linear and the
nonlinear response. The former is valid for weak excitations and presupposes that
the response is directly proportional to the excitation. Linear response theory is
generally represented in the frequency domain. In contrast, nonlinear effects kick in
for large excitations and are best described in the time domain (this is because the
time–frequency Fourier transform is a linear operation, thus not adapted to describe
nonlinear relations). Although a vast literature on the linear electronic response is
available and dates back from the works of Drude in the early twentieth century,
nonlinear effects have only been investigated in the last two decades, mainly with
computer simulations.

The mean-field level of description is perhaps the most widely used, as it incor-
porates, at least to lowest order, some of the features of the N -body dynamics,
but still avoids the formidable complexity of the full problem. A particularly chal-
lenging open problem is the inclusion of dynamical correlations within mean-
field models. Dynamical correlations differ from the correlations that are included
in time-dependent density functional theory (TDDFT), inasmuch as they cannot
be described by a slowly varying density functional, as is done in ALDA (adi-
abatic local-density approximation). Whereas adiabatic correlations are described
within an essentially Hamiltonian formulation and thus cannot model irreversible
effects, dynamical correlations are responsible for the relaxation of the electron
gas toward thermodynamical equilibrium. Some recent results have been obtained
using a generalization of TDDFT that relies on the electron current as well as the
electron density [48]. The phase-space approach, via the Wigner formulation, also
appears promising to model effects beyond the mean-field, as we have illustrated in
Sect. 2.3.

Another important issue, which was not mentioned earlier in this review, is the
inclusion of relativistic corrections in the above models for the electron dynam-
ics. Spin–orbit coupling (which is an effect appearing at second order in v/c) is
sometimes taken into account in a semi-phenomenological way within the Pauli
equation. However, other terms occurring at the same order are often neglected
without further justification. A consistent derivation of relativistic effects to a certain
order in v/c can of course be carried out, starting from the Dirac equation, for the
case of a single particle in an external electromagnetic field [104, 105]. For a many-
body system, this issue is much trickier and is the object of current investigations.

Nanostructures are by definition finite-size objects. Due to the presence of bound-
aries and interfaces, the electron dynamics can thus display novel and unexpected
features compared to bulk matter. For example, as the elastic and inelastic scattering
length (∼ 10–50 nm for bulk metals) are much longer than the size of the system, an
electron – or a group of electrons – can travel coherently through the length of the
system, thus leading to ballistic transport between the surfaces. The theoretical tools
to study finite-size nano-objects are also relatively recent and have been developed
alongside the experimental breakthroughs that made these objects widely available.
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If the electron dynamics in nanosized objects has received considerable attention
for the last 30 years, the spin dynamics is a much younger field of research, both
experimentally and theoretically. Nevertheless, the already existing applications to
memory storage and processing, and the still speculative, but highly enthralling,
developments in quantum computing, have stimulated a large number of works in
this direction. In Sect. 3 we have illustrated how the models for the electron dynam-
ics can be extended to include the spin degrees of freedom, both in the linear and
in the nonlinear regimes. An outstanding question concerns the demagnetization
processes observed in ferromagnetic thin films irradiated with femtosecond laser
pulses, for which a clear theoretical explanation is still lacking.

The field of optical control of spins in semiconductor nanostructures is also a
very active research area. It is nowadays possible to fabricate and optically probe
individual semiconductor quantum dots doped with one or more magnetic impurities
[106, 107]. One of the major interest of this type of structure is the possibility to con-
trol magnetism via optical processes acting on the charge carriers. Thus, ferromag-
netism becomes optically manipulable on an ultrafast timescale. This is particularly
interesting for the elaboration of future fast-access magnetic storage devices. We are
currently working on quasi one- and two-dimensional nonparabolic quantum dots
containing up to four electrons and doped with a finite number of localized magnetic
impurities. Within the framework of the CI method and the Anderson model, we aim
at investigating the influence of the impurities on the energy spectra and oscillator
strengths with special emphasis on the breakdown of the Kohn theorem.

Finally, another procedure that has attracted particular attention over the last
decade is the low-density doping of semiconductor nanostructures with magnetic
impurities such as manganese ions. The resulting materials (named DMS, for diluted
magnetic semiconductors) can display Curie temperatures as high as 80 K [108] and
possibly larger [109]. The spin of the Mn ions is coupled to the spin degrees of
freedom of the electrons and holes, whose dynamics can be optically excited. DMS
thus offer the possibility of using laser pulses to control the magnetization dynamics
of semiconductor nanostructures.

Given the wealth of fundamental issues and practical applications, the interplay
of charge and spin effects in nanosized objects is bound to remain a major area of
research in the coming years.
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Weak Chemical Interaction and van der Waals
Forces: A Combined Density Functional
and Intermolecular Perturbation Theory –
Application to Graphite and Graphitic Systems

Y.J. Dappe, J. Ortega, and F. Flores

Abstract In this contribution we address the theoretical understanding of weak
chemical interactions and of the van der Waals forces, in conjunction with the last
developments in this area and selected applications to nanostructures. In the first
section, we highlight the importance of these interactions, in physics and chemistry
and also in biology, and we recall early treatments of these issues, as those by van
der Waals and London. After a brief review of the existing methods to treat such
interactions, we present a model based on DFT (for each van der Waals-interacting
independent system) and an intermolecular perturbation theory that uses a localized
orbitals basis set. We will first detail a weak overlap expansion (LCAO-S2) as a
perturbation treatment to determine the weak chemical interaction. Then we will
show how to implement the van der Waals interaction in the DFT solution, from the
dipolar approximation in a perturbation theory. We apply this model to a reference
system for weak interactions, i.e., the interaction between two planes of graphene.
In the framework of a minimal basis set that describes each independent system
and the weak chemical repulsion, we show that it is necessary to take into account
atomic dipole transitions involving high excited states like 3d orbitals to properly
describe the van der Waals interaction. We demonstrate how the delicate balance
between chemical repulsion and van der Waals attractive interaction gives the equi-
librium geometry and the binding energy of the system. Moreover, as an extension
of this work, we obtain the adsorption energy of a carbon nanotube on graphene, the
adsorption energy of a C60 molecule on a carbon nanotube, and the energy of a C60

molecule encapsulated in a carbon nanotube. This gives us the opportunity to discuss
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incommensurable systems. A complete study of C60 dimers is also presented with
future perspective for the study of C60 molecular crystals. We will conclude with
an overview of this work, discussing interaction and transport at metal–organics
interfaces from the point of view of applications in the field of molecular electronics.

1 Introduction

Noncovalent interactions, such as hydrogen bonding or van der Waals (also called
dispersion [1, 2]) interactions, become more and more important in modern research.
These interactions are of special relevance not only in physics and chemistry but
also in biological science. One can find numerous examples in the study of carbon
nanostructures like graphene, carbon nanotubes (CNT), or fullerenes (C60) [3–6],
π -conjugated molecules and physisorption processes on metallic surfaces [7–9],
rare gases dimers [10, 11], water molecules dynamics [12, 13], colloidal chemistry,
interactions between biological membranes as protein folding, helicoidal structure
of DNA through hydrogen bonding [14], molecular recognition, etc.

Nevertheless, a first-principle determination of such interactions remains an
important challenge, especially regarding the case of extended systems. Indeed,
these interactions are weak with respect to the covalent interaction (the correspond-
ing energy ranges from some meV to hundreds of meV) and long range (up to
some nanometers in some cases). This challenge is related to the complexity of the
dispersion interactions, but also to the need to describe accurately the weak “chem-
ical” interaction (see below) between the interacting subsystems. This interaction
is related to the overlaps of the electronic densities and becomes complicated to
handle when these overlaps are too small. The van der Waals interaction, associated
with virtual electronic excitations, is a pure quantum-mechanical effect that can
be viewed as an interaction between instantaneous fluctuating dipoles which leads
to a long-range correlation energy. In that manner, hydrogen bonding, which is of
high importance in biological systems, is also often denominated as van der Waals
interaction, due to its dipolar origin. It has to be precised here that this dipolar inter-
action does not take into account permanent dipole interactions, as it is often the
case, and which leads to strong confusion with respect to the physical nature of the
van der Waals interaction. Moreover, in most cases, the van der Waals interaction
is approximated in the dipolar limit, but one has to bear in mind that a quadrupolar
term can also contribute to this energy and can be even dominant in some cases.

Consequently, due to the quantum nature of van der Waals interaction, it is justi-
fied and even necessary to develop a first-principle method, in order to characterize
precisely the systems where this interaction is important. Therefore, one impor-
tant problem for such a method is the ability to treat at the same time dispersion
and covalent interactions. Indeed, the usual ab initio methods like standard density
functional theory (DFT) are able to describe pretty well strong covalent bonding,
but usually fail in describing weak interactions accurately. Various techniques have
been proposed to overcome this problem and can be classified into three categories,
which are semiempirical models, quantum chemistry, and DFT-based models. In
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Sect. 1, we will give an overview of the most important existing techniques up to
now to describe van der Waals and weak chemical interaction. Special emphasis
will be given to DFT-based models due to the high relevancy of DFT in electronic
structure calculations. In Sect. 2, we discuss a DFT-based model combined with
intermolecular perturbation theory to calculate van der Waals interaction and its
application to a reference system such as graphite. This formalism is built in a local-
ized orbital DFT frame, and we will present here our LCAO-S2 specific model for
calculating weak chemical interactions, as well as our approach to calculate the van
der Waals forces. The obtained results underline the need to take into account dipolar
transitions with high-excited states. In Sect. 4, we propose an extension of the pre-
vious model, with application to graphitic systems like graphene, carbon nanotubes
(CNT), or fullerenes (C60). We focus especially on lateral interactions between CNT
and adsorption of C60, as well as interaction in C60-dimers or molecular crystals. In
all these results, we analyze the power law of the van der Waals interaction and
try to deduce some useful parameters for classical molecular dynamics. Then, we
will conclude with an overview of this work, discussing interaction and transport
at metal–organics interfaces from the point of view of applications to the field of
molecular electronics.

2 Theory and Existing Models

2.1 General

Due to the complexity of the van der Waals interaction and, as we have underlined
before, its quantum nature and its nonlocal characteristics, it represents a real chal-
lenge to calculate such interaction. Therefore, a lot of different models have been
proposed, with no real satisfactory solution until now, and the reader is referred to
review articles from Grimme or Dobson, for example, for more general information
about it [15–17]. Our purpose here is to make a brief account of the state of the
art of the existing methods with their advantages and difficulties, before explicating
our DFT-based model in the next section. Before such description, one has to under-
stand first why standard electronic structure calculation methods do not give correct
results. Consider, for example, the Hartree–Fock approximation [18]. In this case,
one can determine the Slater determinant of an N-electron system with the minimal
energy. Nevertheless, when one tries to treat van der Waals interactions in such a
frame, this method is not valid any more, because being a mean-field theory, it does
not yield the properties associated with the long-range electronic fluctuations.

2.2 The Lennard-Jones Potential

A first standard way to overcome this problem, which has been extensively and
is still used, is the description of both weak chemical interaction and van der
Waals interaction by semiempirical methods, like the definition of a general pair
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interaction potential. The Lennard-Jones potential [19–22] is probably the most
commonly used:

u(r ) = 4ε

[
−
(σ

r

)6
+
(σ

r

)12
]

, (1)

where the parameters ε and σ are chosen empirically to fit the studied material. The
r−6 term represents the van der Waals interaction, this power being typical from
dipole–dipole interactions as we will discuss it later. The r−12 term is more arbitrary
and is chosen to describe the repulsion at short range, whose origin is mainly the
Pauli exclusion principle. This potential describes the interaction energy between
two atoms at a distance r . To obtain the total binding energy of the system, one has
to sum all the pair energies of the two subsystems, taking into account the inter-
atomic distance, which means the geometry of the system. This empirical method
has been successful in providing a unified and consistent description of properties
which depend on weak chemical interactions and van der Waals dipolar interac-
tions. But although this potential is widely used and has given numerous interesting
results, it presents a strong disadvantage: the parameters have to be adjusted for
each considered material, and it cannot take into account structural modification of
this material, at the atomic level, for example. For example, the deformation of a
molecule during an adsorption process, which obviously will affect the interatomic
potential, cannot be described correctly through this potential. Moreover, the valid-
ity of the fitted parameters is often questionable, because the arbitrarity of the r−12

term has often to be compensated by the dipolar term, leading to a bad estimation
of the r−6 term, the pure van der Waals energy [23, 4].

2.3 Quantum Chemistry Methods

Another way of treating weak interactions is the one proposed in quantum chem-
istry. The idea is to determine the two interacting subsystems accurately from first-
principle methods and then to treat the weak interaction in the frame of perturbation
theory [24–27]. As the van der Waals interaction is much weaker than the covalent
interaction, this approach is totally justified. Nevertheless, it is important to pay
attention to the way this method is applied. In standard perturbation theory, the
electronic wavefunction of the total system is not antisymmetric, which can generate
some problems. To overcome this difficulty, a lot of different perturbation methods
have been developed. A first group is called symmetrized perturbation theory [28–
32] where the zero-order wavefunction of the total system is the antisymmetrized
product of the wavefunctions of each subsystem. The goal is therefore to handle
correctly the non-orthogonality of the basis orbitals in each subsystem. The second
group is known as symmetry adapted perturbation theory (SAPT) [33–35], where
the zero-order wavefunction of the total system is a simple product of the wave-
functions of each isolated subsystem and the antisymmetry is taken into account
at each order of the perturbation expansion. This method is very useful and has
provided many interesting results on molecular systems. Nevertheless, it presents
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the disadvantage, as most of the quantum chemistry methods for weak interaction
determination, to be computationally much time and memory consuming, which
limits its application to small molecular systems. Similarly, we have to underline
the existence of second-order Møller–Plesset theory (MP2) [36–44], which is also
a quantum chemistry perturbation theory, but where the zero-order Hamiltonian is
the original one, minus the Fock Hamiltonian. This method is very accurate and
works quite well for small molecular systems. However, when one wants to deal
with extended systems or wants to go further in the perturbation development, the
computation time increases in a drastic way and the expressions become really com-
plex to handle. For the sake of completeness, we can also talk about single and
double coupled clusters methods, with perturbative triple corrections [CCSD(T)]
which go even further in perturbation order [45].

2.4 The DFT-Based Methods

Density functional theory is probably one of the most widely used techniques to
describe electronic systems [46, 47]. In principle, according to the Hohenberg–Kohn
theorem, with the appropriate functional, it is possible to calculate the ground state
energy of every electronic system. Consequently, one should be able with the cor-
rect functional to evaluate also weak interactions like van der Waals. Of course, all
the problem lies in the determination of the appropriate functional, and especially
in the determination of the exchange–correlation potential. Many approximations
have been developed to evaluate the exchange–correlation energy and consequently
the related potential. The most famous ones are based on a local approximation, as
the local density approximation (LDA) or the generalized gradient approximation
(GGA) which also takes into account the gradient of the local electronic density
[48]. As it was already discussed before, weak chemical interactions as well as van
der Waals interactions are weak and long-range interactions that in the frame of
DFT cannot be reproduced. In particular, long-range interactions are described by
an exponential decay in LDA, far from the r−6 power of van der Waals. Even the
GGA, as a correction to the LDA in order to obtain a “less local” approximation,
fails to describe that power law. On the chemical point of view, the main difficulty
is due to the large distance appearing in these weak interacting systems, which
results in very small electronic density overlaps. In LDA, for example, this small
density is averaged in the whole space, like the homogeneous electron gas, which
is obviously not a good representation of the realistic electronic density [49–52].
On the physical point of view, as the van der Waals interaction can be seen as a
field interaction between virtual dipoles, these local approximations are not able to
describe this process. Moreover, these dipole–dipole interactions can also be seen
as exchange of virtual photons between the two systems, involving transitions with
highly virtual states, whose description remains out of the range of standard DFT
[15, 53].

Despite all these difficulties, there exist many attempts within the DFT frame to
describe dispersion interactions. These attempts range from semiempirical extension
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of DFT until fully first-principle calculation involving the determination of a new
functional. In the semiempirical extension, a pairwise atom–atom van der Waals
interaction term is added to the DFT calculation. Due to the dipolar nature of van
der Waals interaction, the term is of the form EvdW = − fd (R)C6/R6, where R
is the distance between the given pair of atoms and fd (R) is a damping function
that goes to zero for short distances. C6 is a coefficient which is adjusted nor-
mally to experimental results, as in the case of the Lennard-Jones potential and
which depends on the nature of the atom. This is especially the case of the DFT-D
approach from Grimme et al. [54, 55] and other approaches [56–59]. The main
disadvantage of these methods has been discussed previously in the semiempirical
methods section. This model does not take into account appropriately the repulsive
part coming from the overlap of the electronic densities, because it is assumed to
be correctly treated in the frame of DFT: this introduces inaccuracies for very small
overlaps.

The fully first-principle calculation is focused on the determination of a new
functional, like the work from Lundqvist et al. [60, 61, 3] able to recover dispersion
interactions like van der Waals [16, 62–65]. As it was discussed before, weak inter-
actions are not easy to handle in the frame of DFT, which converts this search of a
functional in a very difficult task. Moreover, the obtained functionals present also
the disadvantage of being really expensive with respect to computational time and
resources. In midway between these two approaches, one can find hybrid methods,
involving DFT and perturbation theory, or DFT and short/long-range separation of
the interaction. In the first case, the two interacting systems are treated separately
with DFT, and the weak interaction is added as a perturbation, with all the difficulties
related to the wavefunction symmetry discussed previously. In the second case, the
use of the error function allows to decompose the Coulombic interaction into the
following way:

1

r12
= 1 − erf(αr12)

r12
+ erf(αr12)

r12
, (2)

where r12 is the distance between the two interacting systems and α a fitting parame-
ter. The idea of such decomposition is to express the exchange-correlation functional
as a sum of two functionals, one of short range (like LDA, for example) and the
other of long range, to recover van der Waals interaction, for example [66–70]. The
obtained exchange–correlation energy can be written in the following way:

E xc[ρ(r)] = E xc
LDA[ρ(r)] + E xc

vdW[ρ(r)]. (3)

This way of doing things can bring intricacies for intermediate distances, where
it is difficult to say if it is a covalent zone (where LDA can describe correctly the
interaction) or if it is a weak interaction range, where dispersion interactions are
dominant.
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In the following section we will present our DFT-based model developed to
describe the interaction between two planes of graphene; this will be generalized
in the fourth section to all kinds of graphitic materials like carbon nanotubes or C60

molecules.

3 DFT and Intermolecular Perturbation Theory: LCAO-S2 +
vdW, Application to Graphene

3.1 General Frame: The LCAO-OO Formalism

In this section, we present an approach that combines DFT in a localized orbital for-
malism with intermolecular perturbation theory to take into account weak chemical
interactions as well as van der Waals interaction. Our general theoretical framework
is the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) method
[71–73], which allows us to connect local orbital DFT with intermolecular pertur-
bation theory in second quantization formalism. The use of the second quantization
formalism, among other advantages, prevents from the symmetry problems encoun-
tered in usual perturbation theory as it was mentioned previously. Our approach has
been previously used to analyze van der Waals forces in rare gas dimers [74] and
the interaction of two graphene layers [53]; in this section we outline the main ideas
of our approach, as applied to this last case (details can be found in [53]).

Let us start with the general LCAO-OO Hamiltonian

Ĥ =
∑

ν,σ

(εν + V ps
νν,σ )n̂ν,σ +

∑

μ �=ν,σ

(tμν,σ + V ps
μν,σ )ĉ†μσ ĉνσ +

+1

2

∑

νωσμλσ ′
Oνμ

ωλ ĉ†νσ ĉ†μσ ′ ĉλσ ′ ĉωσ , (4)

where the creation and annihilation operators ĉ+, ĉ as well as the occupation num-
ber operator n̂ = ĉ+ĉ are defined in a Löwdin orthonormal basis set {φμ}. This
orthonormal basis set is defined from an original basis set of optimized atomic-like
orbitals {ψν} by the so-called Löwdin orthogonalization procedure

φμ =
∑

ν

(S−1/2)μνψν, (5)

where Sμν =< ψμ | ψν > is the overlap matrix.
In Eq. (4) εiμ + V PS

iμ,iμ and tiμ, jν + V P S
iμ, jν define the one-electron terms (with the

pseudopotential (PS) contributions included) and

Oνμ
ωλ =

∫
φν(r̄ )φω(r̄)

1

| r̄ − r̄ ′ |φμ(r̄ ′)φλ(r̄ ′)dr̄dr̄ ′ = (νω|μλ) (6)



52 Y.J. Dappe et al.

are the electron–electron terms. As we underlined before, the use of second quan-
tization ensures that antisymmetry is properly included in the calculation of the
interlayer interaction. In the LCAO-OO formalism, Hamiltonian (4) is rewritten as

Ĥ = Ĥ0 + δ Ĥ , (7)

Ĥ0 =
∑

νσ

(εν + V ps
νν,σ )n̂νσ +

∑

ν �=μ,σ

T̂νμ,σ ĉ†νσ ĉμσ +
∑

ν

Uν n̂ν↑n̂ν↓ +

+1

2

∑

ν,μ �=ν,σ

[
Jνμn̂νσ n̂μσ + (Jνμ − J x

νμ)n̂νσ n̂μσ

]
, (8)

T̂νμ,σ = [tνμ + V ps
νμ,σ +

∑

λ,σ ′
hλ,νμn̂λσ ′ −

∑

λ

hx
λ,νμn̂λσ ].

In Ĥ0 the many-body terms are written explicitly showing the contributions
depending on one, two, and three different orbitals. In particular, Uν = (νν | νν),
Jνμ = (νν | μμ), J x

νμ = (νμ | νμ), hλ,νμ = (λλ | νμ), hx
λ,νμ = (λν | λμ), see

Eq. (6). A deeper interpretation of the energy associated with each term can be found
in [71–73]. The vdW interaction ĤvdW is included in δ Ĥ . Regarding our system
of interest, the graphene–graphene interaction, Ĥ0, takes into account the covalent
interaction inside each graphene plane and the weak chemical interaction between
graphene layers.

3.2 DFT Solution for Each Subsystem: The Fireball Code

Our treatment is based on a DFT solution for each isolated subsystem (in the present
case each plane of graphene) to which we add intermolecular perturbation theory as
discussed later. This DFT solution, obtained in the frame of the orbital occupancy
method, is based on an alternative approach to DFT, in which instead of the tra-
ditional electronic density ρ(r), we use the orbital occupancy nμσ as the central
quantity [75]:

ρ(r) =⇒ {nμσ }.

In usual DFT, the Hohenberg–Kohn theorem tells that the total energy of the
fundamental state of an electronic system is a functional of the electronic density.
In our formalism, this total energy is now a function of the orbital occupation num-
ber, E = E

[{
nμσ

}]
. We can then rewrite Kohn–Sham-like equations to solve the

new effective one-electron problem [71, 75]. Similarly to standard density-based
DFT, all the difficulty lies in the determination of the exchange–correlation energy,
or potential, which is here a function of the orbital occupancies, E XC [{nνσ }]. In
this chapter we outline how van der Waals and weak chemical interaction can be
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incorporated in DFT using the LCAO-OO formalism. A more detailed description
of the LCAO-OO method can be found in [71–73].

In this work, for simplicity reasons, we describe each isolated subsystem using
the DFT code Fireball [76–80], which can be viewed as an efficient simplified
version of the more general LCAO-OO formalism. In similarity to the LCAO-OO
method, self-consistency is achieved in Fireball in terms of the occupation num-
bers nμσ , using a self-consistent version of the Harris functional [77] instead of the
traditional Kohn–Sham functional based on the electronic density. To define these
occupation numbers, we use an optimized atomic-like orbital basis set. In [81] an
optimized minimal basis set for carbon was obtained, considering various carbon
phases as well as several hydrocarbon molecules; this basis set was optimized for
the covalent interactions in those systems (i.e., the basis set optimization did not take
into account weak interactions). In particular for the sp3 basis set of the carbon, the
optimized numerical atomic-like orbitals ψ are

ψ(r) = A [cψ0(r) + (1 − c)ψ1(r)] , (9)

(A is a normalizing constant) where ψ0(r) is the standard Fireball orbital for a
neutral atom [76] and ψ1(r) corresponds to a doubly excited (2+) atom. In both
calculations we have used a cutoff radius of Rc = 4.5 a.u. for the s and p orbitals.
The parameter c is chosen to optimize the total energy for a single graphene layer; at
the same time, the optimized orbitals yield significantly improved structural param-
eters: the C–C distance inside the graphene layer is 1.43 Å, close to the experimental
distance 1.42 Å; for the sake of comparison, the non-optimized basis set, i.e., c = 1
in Eq. (9), gives a value of 1.48 Å for the in-plane C–C distance. The optimized
orbitals are shown in Fig. 1.

A comparison of the Fireball and LCAO-OO approaches has been made recently,
using the same optimized basis set, and we have found that both yield similar results
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Fig. 1 Optimized (solid line) and standard (dashed line) Fireball atomic-like orbitals (radial com-
ponent) for carbon, see Eq. (9): (left) s orbital , (right) p orbital
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Fig. 2 Band structure of an
isolated plane of graphene
calculated with Fireball. The
origin of energy corresponds
to the Fermi level of the
system

 Γ K M Γ
–30

–20

–30

–20

–10 –10

0 0

10 10

20 20

30 30

E
ne

rg
y 

(e
V

)

[73]. Finally, we mention that in the Fireball calculations pseudo-potentials are used
[82, 83], and the LDA exchange–correlation energy is calculated using the multicen-
ter weighted exchange–correlation density approximation (McWEDA) [79, 80].

In this frame, the eigenstates are therefore defined by

ϕn(k) =
∑

i

cni (k)φ0
i =
∑

i

ani (k)ψi (10)

and eigenvalues εn(k), as well as the orbital occupation numbers {ni,σ }, for the
effective DFT problem for each independent layer. In Eq. (10) k is the momentum
parallel to the graphene planes, n the band index, and φ0

i the orthonormal basis
orbitals within each layer, i.e., obtained using Eq. (5) for each isolated layer. A
representation of the band structure of a graphene plane obtained with Fireball is
shown in Fig. 2.

3.3 Weak Chemical Interaction: The LCAO-S2 Method

As mentioned before, the weak interaction between two graphene layers is mainly
due to two contributions: an attractive van der Waals interaction and a repulsive
“weak chemical interaction,” which is often neglected or assimilated to van der
Waals interaction, and which can be viewed as a residue of the strong covalent inter-
action which occurs at smaller distances. This repulsion arises mainly from orthog-
onalization effects between the molecular wavefunctions of each subsystem, which
means that it is directly related to the overlap (S) between these wavefunctions. As
these overlaps are really small in this case (for example, in the case of two graphene
planes, at the equilibrium distance, all the overlaps between atomic-like orbitals in
different layers are less than 0.01), we will use an overlap (S2) expansion to obtain
the corresponding energy [84–87] as illustrated in Fig. 3. This expansion is based
on a development in S of the S−1/2 term appearing in the Löwdin orthogonalization
presented in Eq. (5).
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Fig. 3 Representation of the
weak chemical interaction in
the LCAO-S2 model between
two graphene planes

Now we will analyze this “chemical” intermolecular interaction starting from our
Hamiltonian Ĥ0 defined in Eq. (8); this Hamiltonian includes the contributions of
each subsystems, here the two planes of graphene, and an intermolecular contribu-
tion that contains both one-electron and many-body contributions [the van der Waals
interaction is included in the term δ Ĥ of Eq. (8)]. For the systems considered in this
chapter, the many-body terms yield an almost negligible contribution, as we will see
in the results section; a detailed explanation of how to calculate this contribution can
be found in [53]. In this chapter we focus now on the important one-electron term
which yield the main contribution to the “chemical” interaction.

Let us consider the eigenstates {ϕn(k)} (first layer) and {ϕm(k)} (second layer)
obtained from the DFT calculation for each independent graphene layer, see
Eq. (10). These eigenstates are already orthogonal to the rest of eigenstates for the
same layer, but there exists an overlap Snm(k) between eigenstates in different layers.
Due to orthogonalization requirements, this overlap induces a shift of the occupied
eigenenergies of each independent plane of graphene, leading to a repulsion energy
between the planes:

δSεn(k) = −
∑

m

1

2
[Snm(k)Tmn(k) + Tnm(k)Smn(k)]

+1

4

∑

m

|Snm(k)|2(εn(k) − εm(k)),
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δSεm(k) = −
∑

n

1

2
[Smn(k)Tnm(k) + Tmn(k)Snm(k)]

+1

4

∑

n

|Snm(k)|2(εm(k) − εn(k)), (11)

where Snm(k) and Tmn(k) are the overlap and hopping integrals, respectively, between
eigenvectors m and n in different layers, for a given k. The orthogonal hopping
terms Tmn(k) are obtained from the non-orthogonal hopping terms T 0

mn between
eigenstates n and m of the isolated graphene layers:

Tmn(k) = T 0
mn(k) − 1

2
Smn(k) [εm(k) + εn(k)] , (12)

where the second term in the right is the correction due to the small overlap between
eigenstates in different layers, Snm(k). The hoppings T 0

mn are directly calculated
using the local-orbital code Fireball [76–80] that we use for the DFT calculation
of each layer.

The effect of the hopping Tmn(k) matrix elements can be calculated in a standard
intermolecular second-order perturbation theory:

δT εn(k) =
∑

m

|Tmn(k)|2
εn(k) − εm(k)

,

δT εm(k) =
∑

n

|Tmn(k)|2
εm(k) − εn(k)

. (13)

Thus, we obtain the following “one-electron” contribution to the interaction
energy:

Eone-electron = 2
∑

n=occ.

(δSεn + δT εn) + 2
∑

m=occ.

(δSεm + δT εm), (14)

where a factor of 2 has been included to take into account the spin degeneracy
and only filled states are considered. The different contributions to the chemical
interaction between two graphene layers will be shown and discussed in the result
section.

3.4 van der Waals Interaction

We will now discuss how to incorporate van der Waals interaction in our formalism.
Before describing the method we use to evaluate this interaction, we will try to
precise what is exactly this interaction. If we refer to the London vision of dispersion
or dipolar interactions like van der Waals [1, 2, 88], we can consider three categories
of interactions: the first one is the interaction between permanent dipoles, like what
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we have in the water molecule, for example. The second case is the interaction
between a permanent dipole and an electronic density. In such a case, the permanent
dipole polarizes the electronic cloud which gives rise to an induced dipole; this
induced dipole interacts itself with its originating permanent dipole. These two cases
are not of interest for the situations we consider like graphene–graphene interaction
(since there is no permanent dipole in the graphite), and more generally for the
study of pure van der Waals interactions which do not involve permanent dipoles.
The third category is the interaction between two induced dipoles, and this is the
case we will consider in that work.

As pointed out above, in the LCAO-OO method the van der Waals interaction is
included in δ Ĥ :

δ Ĥ = 1

2

∑

νωσμλσ ′
Oνμ

ωλ ĉ†νσ ĉ†μσ ′ ĉλσ ′ ĉωσ , (15)

where μ, ν, ω, and λ refer to four different orbitals. This term is of course really
difficult to handle in a general way and includes, in particular, the van der Waals
contribution, which in our approach corresponds to the following term:

Ĥ vdW =
∑

i, j,α,β,σ1,σ2

J vdW
i, j ;α,β ĉ+

i,σ1
ĉ j,σ1 ĉ+

α,σ2
ĉβ,σ2 , (16)

with J vdW
i, j ;α,β = (i j | αβ), see Eq. (6), where i , j orbitals (i �= j) belong to the

first graphene layer and α, β (α �= β) to the second graphene layer. In our work we
have used an atom–atom approximation, keeping in Eq. (16) only the terms with
i, j orbitals in the same atom, and α, β in the same atom of the other layer, and have
neglected all the other interlayer interactions from δ Ĥ . Also orbitals {ψ} have been
used for the calculation of J vdW

i, j ;α,β , instead of orbitals {φ} for simplicity.
This first approximation is discussed by Dobson et al. [15] and seems not to be

valid in the metallic case. In the case of graphene–graphene interaction as well as for
metallic CNTs, the question is more polemic at large distance due to the zero gap
in the K -point and the weak metallic character at graphitic equilibrium distance.
All this problem is related to the screening of the van der Waals interaction between
the subsystems. In the metallic case, the energies associated to the dipolar transitions
are really small, and therefore the screening is important. In the graphene case as we
will see later, the energies associated to the virtual fluctuations which lead to van der
Waals interaction are very important (up to 50 eV for the 3d band). Consequently,
we obtain a high-frequency screening which can be neglected here, the dielectric
function ε(r, ω) going to unity. In that manner, we can say that there is no important
collective effect like plasmon frequency shift [89] which validates our atom–atom
approximation. Of course, this approach is not valid in the case of two interacting
metals with high screening.

The next step is the calculation of the four-center Coulombic integral J vdW
i, j ;α,β .

In the present case it can be easily calculated using a dipolar approximation. This
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approximation is totally justified, due to the standard equilibrium distances around
3 Å, which leads, as already discussed, to really small overlaps. In this classical
dipole–dipole approximation, the resulting J vdW

i, j ;α,β integral is calculated as

J vdW
i, j ;α,β = 1

R3

(
< i |x | j ><α|x ′|β > + < i |y| j ><α|y′|β >

−2 < i |z| j ><α|z′|β >
)

(17)

(R is the distance between the two atoms assumed in this expression along the
z-axis), which depends on the different dipolar matrix elements in each atom. Of
course, this approximation would not be valid anymore if we would like to evaluate
van der Waals interaction at really short distances, but this is not the case for this
work. Moreover, as it was discussed above, this J vdW

i, j ;α,β represents the bare van der
Waals interaction, without screening, as approximated in our model.

The van der Waals energy between the two subsystems is then calculated using
second-order perturbation theory. The van der Waals energy is weak with respect to
the covalent energy, which justifies the use of this approximation. In that frame, we
can now easily find the following van der Waals interaction energy, in terms of the
different eigenstates, kn = ϕn(k) and km = ϕm(k), of the two layers [see Eq. (10)]:

EvdW = 4
∑ ∣∣W (kn1 , kn2 , km1 , km2 )

∣∣2

(ε(kn1 ) − ε(kn2 ) + ε(km1 ) − ε(km2 ))
, (18)

where the sum runs through occupied eigenstates kn1 , km1 and empty eigenstates
kn2 , km2 , the factor 4 includes the spin degeneracy of both layers, and

W (kn1 , kn2 , km1 , km2 ) =
∑

i, j ;α,β

ci (kn1)c∗
j (kn2)cα(km1)c∗

β(km2)J vdW
i, j ;α,β (19)

with i �= j on the same atom of the first layer and α �= β on the same atom of the
second layer.

Momentum conservation imposes the following condition:

kn1 + km1 = kn2 + km2 .

As J vdW
i, j,α,β only includes terms having (i, j) or (α, β) in the same atom, Eq. (18)

can be approximated by

EvdW = 4
∑

i, j,α,β

(J vdW
i, j,α,β)2

∫
ρi (ε1)ρ j (ε2)ρα(ε3)ρβ(ε4)

(ε1 − ε2 + ε3 − ε4)
dε1dε2dε3dε4, (20)

where ρ(ε) represents the local density of states per spin on each orbital; the inte-
grals in ε1, ε3 run through the occupied states and the integrals in ε2, ε4 along the
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empty states. This expression can be further simplified to express the result in terms
of the occupation numbers of each state:

EvdW = 4
∑

i, j,α,β

(J vdW
i, j,α,β)2 ni (1 − n j )nα(1 − nβ)

(ei − e j + eα − eβ)
. (21)

In this expression, ni are the orbital occupation numbers (per spin):

ni =
∫

occupied
ρi (ε)dε (22)

and

ei =
∫

occupied
ερi (ε)dε

/∫

occupied
ρi (ε)dε (23)

e j =
∫

empty
ερ j (ε)dε

/∫

empty
ρ j (ε)dε (24)

are average occupied and empty levels. Using these expressions and the DFT band
structures of each plane obtained previously with Fireball, we can evaluate the van
der Waals energy between the planes. By combining this energy with the weak
chemical repulsion obtained in the LCAO-S2 approach, we can determine the bind-
ing energy of two graphene planes and compare it accurately with experimental
results and other theoretical determinations. This is the goal of the next section.

3.5 Results and Discussion for the Graphene–Graphene
Interaction

In this section we present the results obtained with the theory described above as
applied to the interaction of two graphene layers in the graphite parallel configu-
ration. One has to bear in mind that we study here the so-called AB stacking con-
figuration for the two graphene planes, which is the most favorable configuration
energetically. In these calculations we have used an optimized sp3 basis set for car-
bon, as discussed above, and each graphene layer is calculated using the local-orbital
DFT–LDA code Fireball [76–80].

First of all we present the results of weak chemical energy calculations. This
energy is represented in Fig. 4. We can see the different contributions discussed
above, versus the interplane distance, i.e., the one-electron part and the many-body
part (exchange and Hartree; notice that the exchange term also arises from the
LCAO-S2 expansion; more details can be found in [53]). This figure shows that the
Hartree and exchange contributions are marginally attractive, but much smaller than
the repulsion arising from the “one-electron” terms: the interaction energy with-
out vdW is repulsive for all distances. The inset in Fig. 4 shows the contributions
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Fig. 4 One-electron, Hartree and exchange integral (Jo S2 − Jx ) contributions (see text) to the
interaction energy (per atom in the unit cell) for two graphene layers as a function of the graphene–
graphene distance. Inset: decomposition of the one-electron term (see text)

from the different one-electron terms: the repulsion is due to the orthogonalization
effects associated with the −ST contribution [first term on the right in Eq. (11)] that
dominates over the attractive term due to the hoppings [Eq. (13)] and the almost
negligible contribution from the S2 term [second term on the right in Eq. (11)].

As a general remark, we can say that this calculation is really close to a GGA
calculation, which would be slightly better than LDA in this case, as underlined by
Rydberg et al. [3], with high precision since the overlaps remain very small, which
means near the equilibrium distance and over. Of course, in a standard Lennard-
Jones representation, this term would be represented by a r−12 power, fitted empiri-
cally. In our first-principles approach the decay is obviously better, and we can see
that the decay has rather an exponential form, which is due to the dependence of
the overlaps with the distance. By using this LCAO-S2 expansion, we also avoid
numerical problems due to average of the electronic density in the whole space
when it is really small compared to the density in the plane. Moreover, we have to
say that a standard LDA calculation with the Fireball code could not reproduce this
result. In this case we find a minimum of attractive energy around some meV. We
also stress that what is called usually van der Waals determination in DFT–LDA is in
fact similar to our calculation of the weak chemical energy. Although theoretically
DFT should include all kinds of electronic interactions, the van der Waals energy is
not included in the LDA formalism and should be the object of a specific calculation
as what we present here.

We will now study the results for the van der Waals contribution in the graphene–
graphene interaction. As we can see from Eq. (21), all what we need to determine
the van der Waals energy lies in the DFT resolution of each graphene plane (energy
eigenvalues and charges occupations) plus the dipole matrix elements. Within our
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minimal basis set, the vdW interaction in Eqs. (20) and (21) involves only the
dipole–dipole interactions related to the term < s|z|pz > (or < s|x |px >, etc.). For
our optimized basis (see Fig. 1) we obtain the value

<s|z|pz>= 0.44 Å. (25)

The corresponding vdW energy is represented in Fig. 5, together with the chem-
ical interaction, represented as well in the total energy (sum of vdW and chemical).
This figure clearly shows that the total interaction energy is a balance between the
repulsion from the “chemical” interaction energy (sum of the different terms in
Fig. 4) and the vdW attraction. As shown in this figure, the minimal basis calculation
yields only a weak attraction between graphene layers, with an interlayer energy of
∼ 7 meV per atom in the unit cell. This value is clearly insufficient when compared
to the experimental binding energy for graphite (see below). Let us remind here that
the present calculation has been achieved in a minimal sp3 basis set for carbon. This
minimal basis set has been chosen as we told previously because it reproduces quite
well various characteristics of carbon phases and gives of course adequate character-
istics for one plane of graphene. That means we consider here only 2s → 2p transi-
tions, which is obviously not enough, when looking at the obtained result. Thus, we
have analyzed the improvement of the calculation of the vdW energy, taking into
account further atomic dipoles transitions in Eq. (21) following an idea developed
previously for rare gas interaction [74]. First, we have analyzed the dipole–dipole
contributions associated with a double basis set sp3s∗ p∗3. The excited states s∗ and
p∗ are obtained within the subspace used to optimize the minimal basis set, see Eq.
(9), as those orthogonal to the corresponding s or p orbital. The following dipole
terms are obtained for these orbitals:

<s|z|p∗
z > = −0.14 Å, (26)

<s∗|z|pz > = −0.22 Å. (27)

Fig. 5 Chemical (sum of
different contributions shown
in Fig. 4), van der Waals and
total interaction energies (per
atom in the unit cell) for two
graphene layers for the
minimal basis set calculation
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The inclusion of the transitions related to dipoles of this type yields an increase
for the vdW energy by a factor of 1.6 (60% increase) as compared with the minimal
basis vdW energy. As shown below, important dipole–dipole vdW transitions are
still missing. In order to determine this missing dipoles, and as excited states are
not really well described in DFT (moreover a complete calculation with extended
basis set would increase dramatically the computation time), we can use quantum
mechanics sum rules. For example, for the s orbital

<s|z2|s>=
∑

n

<s|z|n><n|z|s> (28)

we can analyze the saturation of the associated transitions. The direct calculation
yields a value of 0.23 Å2 for <s|z2|s> that can be compared with

<s|z2|s>=<s|z|pz ><pz|z|s > + <s|z|p∗
z >< p∗

z |z|s> +... (29)

The dipole values obtained above in Eqs. (25)– (27) suggest that the dipole tran-
sitions involving the s orbital are already well represented by the <s|z|pz >- and
<s|z|p∗

z >-like terms (the first two terms shown in Eq. (29) yield already 0.21 Å2).
This is really consistent, since there are no transition between s and d orbitals, which
would be the next missing dipole.

Let us analyze in a similar way the transitions involving the p orbitals. The cor-
responding sum rule is

< pz|z2|pz >=< pz|z|s ><s|z|pz > + < pz|z|s∗ ><s∗|z|pz > +... (30)

The direct calculation yields < pz|z2|pz >= 0.42 Å2, while the < pz|z|s > and
< pz|z|s∗> terms only add up to 0.24 Å2, 57% of the total value; this result sug-
gests that important dipole transitions are still missing in the calculation of the vdW
energy. The obvious candidates are the dipolar transitions involving d orbitals.

In order to estimate the contribution of these transitions to the vdW energy we
need to obtain a value for the <pz|z|dz2> term (all other dipole terms involving p
and d orbitals can be easily obtained from this one). We can estimate this dipole
as follows. First, assuming that this term provides complete saturation in the sum
rule, Eq. (30), gives an upper limit of 0.42 Å for this term. Second, we can use
the saturation of the sum rule for the s orbital, Eq. (29), as a guide to obtain a
more approximate value for < pz|z|dz2 >. For example, we may assume that the
contribution from d states to the sum-rule Eq. (30) is split between <pz|z|dz2> and
< pz|z|d∗

z2> in a similar way as the one from p orbitals in the sum rule Eq. (29) is
split between the terms <s|z|pz > and < s|z|p∗

z >; following these arguments we
obtain a value of < pz|z|dz2 >� 0.32 − 0.35 Å. The inclusion of the < pz|z|dz2 >

term in Eq. (30) using these values yields 82–87% saturation for the < pz|z2|pz >

sum rule.
We still need to discuss how to calculate the energies, es∗, ep∗, and ed , for the

s∗, p∗, and d orbitals, see Eq. (21). Regarding es∗, and ep∗, we have recalculated the
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graphene electronic band structure using the extended basis s, p, s∗, and p∗; this
calculation yields new empty bands that allows us to obtain

es∗ =
∫

empty
ερs∗(ε)dε/

∫

empty
ρs∗(ε)dε, (31)

ep∗ =
∫

empty
ερp∗(ε)dε/

∫

empty
ρp∗(ε)dε. (32)

Regarding the d orbitals, which belong to the same shell as the s∗ and p∗ orbitals,
we have assumed ed to be a little larger (5 eV) than ep∗ : these small changes do not
modify practically the van der Waals energy (ep∗ is around 50 eV above EF , i.e.,
the (s∗, p∗, d) shell is resonating with the continuous spectrum).

With these values, we can now calculate the contribution of the many different
dipole–dipole p → d transitions to the total vdW energy. Surprisingly, these transi-
tions represent ∼ 55% of the total vdW energy, while the minimal basis contribution
(transitions between s and p orbitals) is only ∼ 28% of the total vdW energy. The
remaining vdW energy is associated with s → p∗ and p → s∗ transitions.

Figure 6 shows the total vdW energy that is obtained when the dipole–dipole
s → p∗, p → s∗, and p → d transitions discussed above are also included in
the calculation, using Eq. (21). We represent as well the total energy obtained by
adding this vdW energy to the chemical energy calculated using the minimal basis
(see Fig. 5). We obtain an interlayer graphene–graphene equilibrium distance of
3.1–3.2 Å (depending on the value of <pz|z|dz2>) and an interlayer energy of 30–36
meV per atom in the unit cell, i.e., a binding energy of 60–72 meV. These results
correspond to an interlayer binding energy of 120–145 meV per unit cell; each unit
cell contains four atoms, two in each layer. These values can be compared with
the experimental evidence for graphite. Neglecting interlayer interactions beyond
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Fig. 6 van der Waals and total interaction energy (per atom in the unit cell) when the dipole–dipole
s → p∗, p → s∗, and p → d transitions are included in the calculation of the vdW energy, as
discussed in the text. In this figure we have used the value < pz |z|dz2 >= 0.34 Å
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the first neighboring layers in graphite, our results for the graphene–graphene case
suggest an interlayer binding energy for graphite of the order of 60–72 meV/atom, a
value that can be compared with the different experimental estimates: 43 meV/atom
[19] (see also [58]), 35 ± 10 meV/atom [90], and 52 ± 5 meV/atom [91]; notice
that the two last experimental numbers are indirect measurements of the interlayer
binding energy for graphite, one through the analysis of collapsed multiwall carbon
nanotubes [90], the other through the study of the interaction of polyaromatic hydro-
carbons with graphite using thermal desorption spectroscopy [91]. Regarding the
interlayer distance, our results for the graphene–graphene case suggest an interlayer
distance for graphite of 3.1–3.2 Å, to be compared with the experimental value of
3.34 Å. It is also worth comparing our results to those obtained using the vdW-DF
[61] technique, where a fully non-local correlation functional Enl

c [ρ] completes the
GGA-DFT calculation. Recent calculations for graphite using this technique yield
[92] 45.5 meV/atom and 3.6 Å (24 meV/atom and 3.76 Å using the previous ver-
sion of the functional [3]). Finally, we mention that our calculation for the vdW
interaction presents a −1/d4 behavior as a function of the interlayer distance, cor-
responding to parallel 2D insulators. Here we mention again a comment made by
Dobson et al. [93, 16], regarding the power law of van der Waals interaction. For
graphene–graphene interaction, they find a power law of −1/d3 at long distance,
for two π -conjugated layers. This treatment is based on a description of interacting
plasmons between the two planes, yielding a shift of the plasmon frequency in each
plane. All the question here is to describe van der Waals interaction as a collective
effect, by using a plasmon description, or a sum of discrete effects, like the use of
pairwise approximation. In our work, we do not include the long-distance behavior,
−1/d3, associated with surface plasmons as explained previously. Our vision is to
treat the two graphene planes like two molecular systems in interaction. This can be
done thanks to the equilibrium distance, around 3 Å, which is still quite small with
respect to the plane extension and because we neglect screening effect due to the
high-energy virtual dipolar transitions. Therefore, we believe that we can treat it in
a local perspective, claiming that collective effects are fully operative for d larger
than 4–5 Å. In the work of Dobson et al., the term −1/d4 corresponding to short
distances is neglected as they are mainly interested in behavior at large distances.

To summarize this part about graphene–graphene interaction, we would like to
underline some points. First, the weak interaction between π -conjugated systems
has two components: the well-known attractive van der Waals part and a weak chem-
ical repulsion due to the small overlap between the electronic densities. The balance
between these two contributions gives the binding energy of the system. Second, our
original LCAO-S2 approach is really accurate to describe the repulsive weak chem-
ical energy. Third, we have developed a fast and simple description of the van der
Waals interaction, based on a pairwise atomic interaction, the dipolar approxima-
tion, and a perturbation treatment. Fourth, the very important and original result is
that more than half of the van der Waals energy is due to virtual transitions, i.e., tran-
sitions with high-excited states like here the d band of carbon. And finally, this result
is in really good agreement with experimental or other theoretical determinations. In
the following part, we will use this theory validated by the graphene–graphene result
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to study weak interactions between other graphitic systems like carbon nanotubes
or fullerenes.

4 Graphitic Systems: The Case of Carbon Nanotubes
and Fullerenes

In this part we will present some very recent results about van der Waals interaction
in more general graphitic systems, for example, carbon nanotubes (CNT), fullerenes
(C60), and their adsorption on graphene [101]. We use the same formalism as
previously developed for the interaction between graphene planes, i.e., the LCAO-
S2 approach, combined to our van der Waals perturbation treatment. In all cases,
each isolated subsystem is totally determined within our DFT formalism, and using
the Fireball code for numerical applications. In the following, we will detail weak
lateral interaction between single-wall CNTs, for various radii, the case of C60-
dimers, adsorption of C60 on graphene or CNT, and finally, double-wall CNTs and
encapsulation of C60 in CNT. This work brings new results in this field and repre-
sents as well a first step for such studies as many aspects still need to be improved
or deeply studied.

4.1 Weak Lateral Interaction Between CNT: Influence
of the Radius

In this section we study the lateral interaction between two CNTs for various radius.
The atomic configuration for two CNTs 4 × 4 is represented in Fig. 7. We then
represent in Fig. 8 the evolution of the lateral binding energy between two CNTs,
for different radius as CNT 4 × 4, 6 × 6, 8 × 8, 10 × 10, and 12 × 12. We represent
also the equilibrium position of two graphene planes, which should be reached by
interaction of CNTs with infinite radius.

Fig. 7 Atomic configuration
of two CNT 4 × 4 in parallel,
for weak lateral interaction
study
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Fig. 8 Evolution of the lateral binding energy of CNT as a function of the wall to wall distance, and
for various CNT radii. The vertical line represents the equilibrium distance between two graphene
planes

The various interaction energies per unit length are shown in Table 1. We can
observe the increase of the binding energy per unit length with the radius of the CNT
which is related obviously with the increase in the number of atoms in interaction.
Therefore, if we consider an effective surface as defining the interaction between
two CNTs, we can assume geometrically, for quite large CNT, that this effective
surface is proportional to the square root of the radius. In Fig. 9, we represent the
same lateral energies as before, divided by the square root of the CNT radius. We
can observe that the normalized energy curves are almost similar, deviations occur-
ring only in the case of small CNT (4 × 4, for example), where the radius is not
big enough to validate the geometrical approximation. Another interesting point to
consider is the mutual orientation of the CNTs. It is not our goal here to make a
complete study of this problem, but just to point out the main idea. We did the
calculation of the lateral energy between 12 × 12 CNTs, in an AA stacking and in
an AB stacking, in analogy with the possible graphene–graphene configurations; we
can see on Fig. 10 that this gives rise to a slight difference in binding energy and
minimum (about 16 meV/Å for the binding energy and 0.05 Å for the equilibrium
position), as the AA configuration here is more repulsive, similarly to the graphene
case.

Table 1 Evolution of the equilibrium positions and the energy minimum of CNT lateral
interaction, as a function of the CNT dimensions

CNT dimensions Equilibrium position (Å) Energy (meV/Å)

4 × 4 2.85 199
6 × 6 2.9 226
8 × 8 2.9 269
10 × 10 2.9 296
12 × 12 2.95 310
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Fig. 9 Evolution of the
lateral binding energy,
normalized with the square
root of the CNT radius, as a
function of the wall to wall
distance, and for various
CNT radii
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Finally, we also observe that the power law of the van der Waals interaction in the
energy interaction tail is 1/d4 between two CNTs, d being the wall to wall distance,
as is the case for graphene–graphene interaction.

4.2 Binding Energy of C60 Dimers

In this part, we are interested in the interaction between two fullerenes (C60). This
is an interesting problem which has been already addressed by different methods
[95, 23, 6]. The binding energy of such system is still unclear, as we can find theoret-
ical determinations ranging from 80 to 554 meV per dimer. Moreover, it is not well
established if this binding energy is van der Waals like or if it is slightly covalent. In
this work, following the formalism we have developed for graphene–graphene inter-
action, we consider that these two interactions coexist as in the previous systems,
and the balance between both is determined within our DFT + intermolecular per-
turbation theory. In Fig. 11 we represent the configuration of the studied system.

Fig. 10 Comparison of AB
and AA stacking for the
lateral interaction energy
between two CNT 12 × 12
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Fig. 11 Atomic configuration
of the studied C60 dimer

We did not focus really on the mutual orientation of the two C60, as our goal is
to get a first idea of the binding energy of such system. Nevertheless, in a future
work, we will look more precisely at this detailed structure. The point here is to see
how our approach compares with previous theoretical determinations. Our result is
represented in Fig. 12, as the total binding energy versus the wall to wall distance.
We present as well the detail of the two contributions, which are the “chemical”
repulsion and the van der Waals energy.

We find a minimum energy of 440 meV for the whole dimer, at an equilibrium
position of 3 Å. This result constitutes an intermediate result between previous
DFT–LDA determination which underestimates the binding energy because of the
lack of van der Waals interaction, and the Lennard-Jones potential determination,
which overestimates the van der Waals part to compensate an incorrect determina-
tion of the repulsive part. We also observe a power law in 1/d4 for the van der Waals
interaction in this system.

It is also interesting to present the interaction between C60 in a C60-molecular
crystal, in the simple cubic crystalline form. This structure is represented in Fig. 13.

Fig. 12 C60 dimer binding
energy within our model.
“Chemical” repulsion and
van der Waals contribution
are also represented
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Fig. 13 Atomic configuration
of the studied C60-molecular
crystal

We find a minimum binding energy of 1.74 eV per C60 molecule, for an equilib-
rium lattice parameter of 9.7 Å, which is in quite good agreement with experimental
determination. This result has to be taken with caution, as well-known rotational
effects have not been considered here. Moreover, a deeper study has to be achieved,
since the crystalline lattice is known to be simple cubic at low temperature and face
centered cubic at ambient temperature, from neutron and X-ray diffusive diffusion
determination [96]. These two forms are related by an orientational ordering transi-
tion [97, 98], which still has to be explored within our approach. This problem will
be the subject of a future work where van der Waals forces will be introduced within
a molecular dynamics calculation.

4.3 Adsorption of C60 on Graphene and CNT

In this part, we present the adsorption of a C60 molecule on graphene and on a CNT
10 × 10. This work is also a first step in the study of weakly adsorbed molecules on
metallic surfaces as well as the study of organics-doped CNTs. The C60 adsorption
on graphene has already given us elements to estimate the equilibrium position of
C60/Au(111) in order to determine interface dipole and charge transfer [99].

The adsorption configuration of C60 on graphene is represented in Fig. 14, and
the adsorption energy curve as well as the “chemical” repulsion and the van der
Waals energy, calculated in our approach are represented in Fig. 15.

In this case, we find an equilibrium position of 2.9 Å, a bit less than for graphene–
graphene interaction, and a minimum energy of about 1 eV per C60 molecule. This
result is due to a lower repulsion between C60 and graphene, because of the cur-
vature of the molecule, while the van der Waals interaction, which is long range,
remains the same. We find here a power law of 1/d3 at short distances, which goes
to 1/d4 for distances bigger than the C60 dimensions.

In Fig. 16, we represent the configuration of C60 adsorbed on CNT 10 × 10. This
CNT has been chosen for its relative similar size to C60, a bigger CNT would give
a result close to the one obtain for C60 on graphene. In Fig. 17, we represent the
evolution of the binding energy per C60 molecule, with respect to the wall to wall
distance with the CNT.
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Fig. 14 Atomic configuration of the C60 adsorption on graphene

Fig. 15 Binding energy,
“chemical” repulsion, and
van der Waals energy of C60

adsorbed on graphene,
calculated with our approach
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Fig. 16 Atomic configuration
of the C60 adsorption on CNT
10 × 10
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Fig. 17 Binding energy,
“chemical” repulsion, and
van der Waals energy of C60

adsorbed on CNT 10 × 10,
calculated with our approach
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Here we find an equilibrium position at 2.85 Å and a minimum of energy of 796
meV per C60 molecule. The power law is found to be 1/d

7
2 for d � R (R being the

C60 radius), which is close to the result encountered for adsorption on graphene.
In these two situations, more work has still to be done, for example, about mutual

orientation between the two systems or about doped CNTs with organic molecules
[100]. This will be explored in the future also.

4.4 Encapsulation of C60 in CNT and Double-Wall CNT

The problem of encapsulation of molecules and especially C60 is very important
nowadays as these systems present interesting charge transfer properties [101, 102].
For example, it has been observed that a C60 encapsulated in a CNT, also called
peapod [103, 104], presents an excess of electronic charge, resulting in a negative
net charge. These properties are very interesting for molecular electronics, and the
study of various molecules inserted in CNT is a hot topic. However, if the binding
energy can be estimated experimentally, there is still an intense theoretical contro-
versy to determine it with great accuracy, as the nature of the bond remains difficult
to understand. Many attempts have been done to determine this interaction, mostly
with Lennard-Jones calculations [105, 106] which do not really bring a physical
comprehension of this interaction. We can also find a very recent paper where
calculations have been achieved in a pure DFT formalism [107], without any inclu-
sion of van der Waals interaction, which seems surprising.

We present here the result of LCAO-S2 + van der Waals calculation for a C60

molecule inserted in a CNT 10 × 10. The geometry of the configuration is repre-
sented in Fig. 18.

We have then represented the evolution of the binding energy of this C60 molecule
as a function of the distance between the center of the molecule with the axis of the
CNT. The result is shown in Fig. 19.
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Fig. 18 Atomic configuration
of a C60 molecule
encapsulated in a CNT
10 × 10

From this result, we observe first that the minimum energy of C60 is not centered
in the CNT, but is situated at about 0.2 Å from the center for the CNT 10 × 10
and 1.9 Å for the CNT 12 × 12. This is due to the balance between the repulsive
weak chemical interaction and the attractive van der Waals force. The curves here
are quite flat, but if we increase the diameter of the tube we can clearly see these
radial minima (here there are only two positions, as we represent the evolution along
a diameter). Regarding the minimum of energy, we observe total binding energies
for the molecule of 4.05 eV (CNT 10 × 10) and 2.28 eV (CNT 12 × 12), which is in
good agreement with previous calculations from Girifalco et al. [106] but reveals a
stronger cohesion energy than the ones calculated in DFT [107]. From these results,
we stress that the interaction of C60 with CNT is driven by weak interactions, among
which one can find van der Waals, which cannot be reproduced correctly in the
frame of standard DFT. The different results with the two sizes of CNT are due
to the number of effective interacting atoms of the CNT with the molecule; this
number is smaller for bigger CNT, and we tend to the situation of C60 adsorbed
on graphene. Another interesting point is to calculate the variation of energy for a
translation of the C60 molecule along the axis of the CNT. We observe that there are

Fig. 19 Binding energy of
C60 encapsulated in a CNT
10 × 10 and in a CNT 12 × 12
in function of the distance
between the center of the
molecule and the CNT axis
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Fig. 20 Atomic configuration
of a CNT 4 × 4 inserted in a
CNT 10 × 10

only very small variations (about some meV) of the binding energy of C60 in the
CNT, due to the corrugation, which means that the translation is practically costless
energetically. This kind of result has already been observed in bioorganic molecules,
with covalent binding energy [104], but it has not been demonstrated theoretically
in the case of peapods until now.

We have proceeded to the same study with CNT 4 × 4 inserted in CNT 10 × 10.
This system is comparable to the C60 considered before, as the diameters of both
systems are similar. Moreover, this study opens the way to a more general study of
multiwall CNT, which has still to be done, since there is no clear interpretation of
the binding energy in that case either. The atomic configuration is represented in
Fig. 20.

The energy of such system, per unit length, is represented in the Fig. 21, as a
function of the interaxis distance.

Here also we can observe this radial minimum (here two positions are repre-
sented, since we show the evolution along a diameter) previously seen with the C60
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Fig. 21 Binding energy of CNT 4 × 4 inserted in a CNT 10 × 10 versus the interaxis distance
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molecule, which is situated at 1.3 Å from the central axis. The binding energy is
0.92 eV/Å, which is fully comparable with the one obtained with C60 if we take
about 6 Å for the length of the CNT 4 × 4.

These problems of encapsulations present many interesting applications, as
underlined before, and these two model systems constitute a first step for future
study of complex molecules inserted in CNT.

4.5 C6 analysis of the van der Waals Interaction
in Graphitic Materials

Before concluding this part of the review on graphitic materials, we would like to
make a summary of the results encountered here. With such objective, we have
represented in Table 2 the values of the C6 coefficient (the van der Waals interac-
tion between two atoms has a 1/r6 dependence, as we determined it from dipolar
interaction) obtained for all our calculations, for a pair of two carbon atoms. These
coefficients represent an average value obtained over all pairs of atoms.

Table 2 Evolution of the average C6 coefficients obtained for the different systems considered in
this work

System C6 coefficient (eV/Å6)

graphene–graphene –13.8
CNT–CNT (all diameters) –14.7
C60-C60 –15.1
C60-graphene –14.9
C60-CNT –14.9

The main observation we can make is that the variation of our C6 value is really
small (about 1 eV/Å6), which confirms what we have already developed previously:
in our approach, the repulsive weak chemical energy is determined with high accu-
racy, and the van der Waals contribution is determined in an independent way, from
DFT data. It means that it is not necessary to compensate one interaction (or one
potential) with the other to obtain a good equilibrium position and a correct binding
energy. This is a disadvantage of some previous work [23], where one can observe
variations of the C6 coefficient of about 5 eV/Å6.

We will not present C12 variations for the weak chemical repulsion, as it obvi-
ously does not correspond to the reality. Historically this 1/r12 variation is supposed
to represent only the Pauli repulsion, which is observed at distances much shorter
than the ones considered here. It is indeed more realistic to study an exponential
decay of this part, as it follows the overlaps evolution, but it can be either approxi-
mated from a GGA calculation with reasonable accuracy.

5 Summary

In the present work, we have tried to present some important concepts about weak
chemical interactions and van der Waals forces and a new fast and efficient method
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to determine them from DFT plus perturbation theory. The main important idea
about weak interactions, which are often attributed only to van der Waals forces, is
that we have a balance between two kinds of interactions. The first one, generally
repulsive, is what we call the weak chemical interaction, which is due to the weak
electronic overlap between the two interacting systems. The second one, attractive at
large distance, is the van der Waals interaction. The balance of these two interactions
gives a weak potential well, at an equilibrium position larger than the usual covalent
interaction. Another precision has to be made about the term “weak interaction”. Its
sense is weak with respect to the covalent interaction, but as we have seen for the
C60 molecule inserted in a CNT, we can reach some eV for the whole interacting
molecule, which is not so weak indeed.

It is well known that DFT, and especially the LDA approximation, fails to
describe these weak interactions. LDA results giving reasonable values for such
interactions can only be a compensation of errors in the calculation. On the other
hand, Lennard-Jones-like calculation, which has given most of the known results
in these weak interacting systems, is based on fitted parameters, which depend on
the material and its phase. In this method, we can often see that the C6 parameter
associated to the van der Waals interaction has to compensate the random value of
the C12 parameter associated to the repulsive part in order to get agreement with the
experiment.

We have presented a fast and efficient method, based on DFT calculations in a
localized-orbitals basis set, using an intermolecular perturbation theory. The numer-
ical part is achieved by the use of the Fireball ab initio tight-binding molecular
dynamics code. The weak chemical interaction is correctly determined from DFT
as a shift of the molecular levels of each subsystems. The van der Waals part is
obtained as the interaction between fluctuating atomic dipoles, using DFT, pertur-
bation theory, and quantum mechanics sum rules. This approach has been tested and
validated on a reference system, i.e., the interaction between two graphene planes.
An important result is the major contribution of dipolar transitions with high-excited
states, the 3d states for the carbon atom, which represents more than a half of the
total van der Waals energy.

We have then extended the application of this method to more general graphitic
systems, like the lateral interaction between CNTs, C60-dimers and molecular crys-
tals, adsorption of C60 on CNT and graphene, and finally insertion of C60 or CNT in
CNT. As we said before, this work is preliminar to a more complete determination in
such systems. We just picked up some interesting cases to show the good agreement
between our approach and previous determinations, as well as the robustness and the
potential of this method. Of course, there is an important zoology in these systems
which still has to be explored and will be the object of further works.

This method opens also many lines for future perspectives. On a methodological
point of view, two goals have to be reached, which are first the generalization of the
method to every kind of chemical specie (to go beyond carbon atom interaction),
and second, the derivation of the forces from this energy determination to develop a
molecular dynamics code including van der Waals forces. As we underlined before,
there are many potential applications to these developments. In graphitic systems,
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as CNTs, for example, there is still a huge unknown world to discover with the
inclusion of molecules in the CNT, for chemical applications, electronics, or even
medicine with some CNT-based molecular treatment.

Another very important line which will be developed more and more in the next
years is the field of molecular electronics. Indeed, it is well known that the con-
ductance between a metal and a molecule reaches a maximum at distances between
2.5 and 4–5 Å, which is typically the distance where our method is more efficient.
This is due to the barrier felt by the electrons when crossing the interface. In case
of hybridization at shorter distance, the electrons are mainly reflected, while when
the interaction becomes weaker, and the molecule far from the surface, the electrons
are transmitted. This is the case of π -conjugated molecules, like metallophthalocya-
nines, for example, whose interaction with metallic surface study is in big progress
recently [109–111]. Here the knowledge of the equilibrium shape of the molecule
is of fundamental importance to determine the transport properties. Moreover, the
influence of van der Waals interaction on the DOS at the Fermi level still remains a
big scientific challenge and represents a key for the comprehension of these trans-
port properties. We expect that the new method presented here, as well as its future
developments, can bring some answers to all these problems.
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Reactive Simulations for Biochemical
Processes

M. Boero

Abstract After a brief review of the hybrid QM/MM molecular dynamics scheme
and its coupling to the metadynamics method, I will show how such a combination
of computational tools can be used to study chemical reactions of general biological
interest. Specifically, by using such a reactive hybrid paradigm, where the QM driver
is a Car–Parrinello Lagrangian dynamics, we have inspected the ATP hydrolysis
reaction in the anti-freezing protein known as heat shock cognate protein (Hsc70)
and the unconventional propagation of protons across peptide groups in the H-path
of the bovine cytochrome c oxidase. While the former represents a fundamental
reaction operated by all living beings in a wealth of processes and functions, the
second one is involved in cell respiration. For both systems accurate X-ray data are
available, yet the actual reaction mechanism escapes experimental probes. The sim-
ulations presented here provide the complementary information missing in experi-
ments, offer a direct insight into the reaction mechanisms at a molecular level, and
allow to understand which pathways nature can follow to realize these processes
fundamental to living organisms.

1 Introduction

Modeling biochemical reactions represents one of the recent challenges in molecular
simulations. The attention that this specific field of atomic scale calculations has
gained, especially in the recent years, stems from the fact that biomolecules are
becoming an important target in biochemistry and molecular engineering. Although
still at a pioneering stage, proteins and nucleic acids are at the crossroad of biology,
chemistry, and nanotechnology because of the wealth of functions exerted, their
self-assembly properties, and the possibility of being synthesized in a laboratory in
specifically designed ways. However, experimental probes are often insufficient to
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recover a detailed atomic scale information suitable to address all the issues raised
by these rather complicated systems.

One possibility to recover the missing information and to perform atomic scale
virtual experiments is represented by molecular simulations. In particular, the intro-
duction of first-principles molecular dynamics by R. Car and M. Parrinello more
than 20 years ago [1] made it possible to simulate electronic structure changes
of complex system at finite temperature. Such an approach has been applied to a
variety of systems [2] from inorganic solid state chemistry to aqueous reactions
and biochemical systems. Nonetheless, two main bottlenecks have to be faced when
large biomolecules are involved.

On the one hand, the size of a typical biochemical system, namely a protein or
a nucleic acid, often exceeds 10,000 atoms. In addition to that, they are generally
immersed in several thousands of solvating water molecules that easily make the
size of the system not affordable at a full quantum level. On the other hand, classical
model potentials can afford systems of these sizes, but at the price of neglecting the
electronic structure. Since breaking and formation of chemical bonds are always
occurring when chemical reactions are involved, taking into account the electronic
structure and the modifications it undergoes as a consequence of these processes is
of fundamental importance.

A second bottleneck is represented by the timescale on which biochemical reac-
tions occur. These times can range from microseconds or milliseconds to seconds
and even longer times when large activation barriers have to be overcome. Such
times are far beyond the reach of any quantum simulation, generally limited to few
tens of picoseconds, and also classical simulations, which are of the order of a few
hundreds of nanoseconds.

The scope of the present work is to give an overview on these two issues. After
a brief summary of a widely used hybrid QM/MM molecular dynamics scheme,
able to overcome the size problem at least in a class of systems where the active site
region does not extend to thousands of atoms, a short description of the metadynam-
ics method will be given. The latter is useful to simulate rare events and to solve,
for the class of problems discussed in the reminder of the chapter, the timescale
problem.

Emphasis will be given on the coupling and joint use of QM/MM and metady-
namics, showing how such a combination of computational tools can be used to
study chemical reactions of general biological interest. Specifically, by using such
a reactive hybrid paradigm, where the QM driver is a Car–Parrinello dynamics, we
have inspected the ATP hydrolysis reaction in the anti-freezing protein known as
heat shock cognate protein (Hsc70) [3–5], the unconventional propagation of pro-
tons across peptide groups in the H-path of the bovine cytochrome c oxidase [6–8]
and the charge hopping process along DNA [9, 10].

These three selected themes are of fundamental importance in many respects.
The first one represents the basic reaction operated by all living beings in a wealth
of processes and functions [11]. The second one is at the basis of cell respiration and
one of the forefront research topics in nanobiology and biochemistry [12]. The third
one is crucial in charge localization and transport both for the oxidative damage
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of DNA in living organisms [13] and because of potential applications of synthetic
DNA strands in nanoelectronics [14]. For these systems accurate structural X-ray
data are available, yet the actual reaction mechanism escapes experimental probes.
The simulations presented here provide the complementary information missing in
experiments, offer a direct insight into the reaction mechanisms at a molecular level,
and allow to understand which pathways nature can follow to realize these processes
fundamental to living organisms.

2 Bridging Length and Timescales

2.1 Hybrid QM/MM Approaches

The original idea of dividing a large system into two (or more) subsystems, each
computed at a different level of accuracy, dates back to 1978 and was due to
Momany [15]. Namely, a small portion of the system, where the important chem-
ical reactions and electronic structure modifications occur, is represented quantum
mechanically (QM) while the rest of the system, important from a structural point
of view, but chemically inert, is described by classical molecular mechanics (MM)
[16, 17], which, for the applications described here, is represented by the well-
assessed and benchmarked Amber force field [18, 19].

In this type of approaches, the delicate part is represented by the interface
between the two subsystems. By using a DFT-based first-principles approach, as
in Car–Parrinello molecular dynamics, to represent the QM subsystem, a compro-
mise between accuracy and computational workload can be achieved. Yet a fully
Hamiltonian coupling can be obtained by extending the Car–Parrinello Hamiltonian
H CP as

H QM/MM = H CP[ρ, {RI }] + H MM[{rJ }] + H int[ρ, {rJ }], (1)

where ρ is the electron density provided by the DFT-based QM driver, RI (I =
1, ..., QM) the Cartesian positions of the QM atoms, and rJ (I = 1, ..., MM) the
Cartesian positions of the rest of the (MM) system described by a force field. The
coupling functional

H int[ρ, {rJ }] =
MM∑

J=1

qJ

∫
ρ(x)

|x − rJ |d3x (2)

represents one of the major computational costs, since the sum runs over all the MM
classical atoms and the integration has to be performed numerically in the whole
space. Such a partitioning of the whole system is schematically shown in Fig. 1. To
reduce the workload due to this particle–mesh interaction one can observe that large
|x − rJ | distance leads to negligible contributions both because the denominator in
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Fig. 1 Hybrid QM/MM
partitioning scheme. The QM
subsystem is generally
embedded inside a larger MM
system and the two worlds
interact with each other via
the coupling Hamiltonian
H int. If electrons are
represented on a grid inside
the QM box, as in the case of
plane waves, H int is a
particle–mesh interaction
hamiltonian

Eq. (2) becomes very large and because classical qJ charges very far from the QM
subsystem are screened by all the interposed atoms, molecules, and residues.

It is then possible to divide the calculations in different domains, one close to the
QM subsystem, r < r1 ∼ 10 − 15 Å , where the coupling functional is computed
as in Eq. (2) but for a reduced subset of atoms MM′ < MM, one at intermediate
distances r1 < r < r2 where a rescaled electrostatic potential (RESP) scheme is
adopted [20] and whose extension depends on the system under study, and a longer
range domain, r > r2, where a standard multipolar expansion is adopted. The RESP
term replaces the particle–mesh integral with a classic-like expression

H int
RESP =

MM′′∑

J=1

qJ

QM∑

I=1

qRESP
I (ρ)

|RI − rJ | , (3)

and MM′′ < MM is the subset of classical atoms inside this intermediate region
r1 < r < r2. The quantity indicated as qRESP

I is constructed by fitting the point-like
Coulomb potential to the true electrostatic potential (ESP)

VJ =
∫

ρ(x)

|x − rJ |d3x (4)

smoothed at short distances to avoid spurious overpolarization effects. In addition
to that, the charge is restrained to values close to the so-called Hirshfeld charge [21]
defined as

qHirshfeld
I =

∫
ρ(x)

ρat (|x − RI |)∑
I ′ ρat (|x − RI ′ |)d3x − Z I , (5)

where ρ is the charge density provided by the DFT used for the QM subsystem, ρat

the atomic valence charge density, and
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Z I =
∫

ρat (|x − RI |)d3x (6)

is the bare valence of the I th atom. In practice, we minimize on the fly, during the
dynamics, the quantity

χ =
MM′′∑

J=1

(
QM∑

I=1

qRESP
I

|RI − rJ | − VJ

)2

− wq

QM∑

I=1

(
qRESP

I − qHirshfeld
I

)2
, (7)

where wq is a weight factor generally ranging from 0.1 to 0.25. As can be noticed,
this expression can be easily rewritten as

χ =
MM′′∑

J=1

(
QM∑

I=1

AJ
I qRESP

I − T J

)2

, (8)

where the matrix elements AJ
I are equal to 1/|rI − rJ | for J ∈ MM′′ and equal to

wqδI J for J ∈ QM. Analogously, the vector T J is equal to VJ for J ∈ MM′′ and
to wqqHirshfeld

J for J ∈ QM. Hence, the minimization of χ becomes a trivial least
square procedure and, as such, it reduces to a simple matrix inversion, doable “on
the fly,” that does not add significant computational cost to the simulation.

2.2 Metadynamics and Free Energy Sampling

Simulating chemical reactions and activated processes is computationally challeng-
ing because of the long timescales involved, due to relatively high free energy
barriers separating reactants and products. The various methods proposed over the
years to overcome this difficulty can be classified into two groups: (i) path sam-
pling/optimization methods [22–25], assuming known initial and final states and
(ii) biasing potential approaches [26–29] not relying on a priori knowledge of
the final states but requiring one or more well-defined reaction coordinates. This
latter case is the one more often used in biochemical simulations, since X-ray
data can generally provide the coordinates of the initial structure representing the
reactant side.

The first step is the identification of suitable order parameters, or collective vari-
ables sα(q), with α = 1, ..., p, which are generally analytic functions of a subset
q = {RI , ψi , rJ , ...} of QM and/or MM atomic coordinates, electronic wavefunc-
tions ψi , molecular dipoles, and so on. This step depends clearly on the system and
type of reaction. As a thumb rule, all the slowly varying degrees of motion and in
particular those that involve breaking and formation of chemical bonds (hence QM
variables) must be accounted for in the selected set of collective variables. Specific
cases will be discussed in the next section.
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These sα can then be included as additional dynamical variables completing the
Hamiltonian of the system as

H Tot = H QM/MM + 1

2

∑

α

Mα ṡ2
α(t) + 1

2

∑

α

kα [sα(t) − sα(q)]2 − V (sα, t), (9)

where the harmonic potential restrains the oscillations around the analytical expres-
sion of the collective variables and a time-dependent penalty potential V (sα, t) has
the scope of pushing the system to escape the initial local minimum and preventing
this same system to visit again a region of the phase-space already explored [28, 29].

In practice, after performing an ordinary molecular dynamics run and exploring
the local phase-space, a Gaussian penalty function is added to the global poten-
tial and subsequent additions of these functions, accumulated in V (sα, t), allow the
system to explore the free energy landscape spanned by the variables sα as schemat-
ically illustrated in Fig. 2. The history-dependent potential has the explicit form

V (sα, t) =
∫ t

0
|ṡ(t ′)|δ

(
ṡ(t ′)
|ṡ(t ′)| [s(t ′) − s]

)
· A(t ′) exp

(
− (s(t ′) − s)2

2(Δs)2

)
dt ′, (10)

where s = (s1, ..., sα, ...), the Dirac delta ensures the continuity of the trajectory and
velocities and the amplitude A(t ′) has the dimensions of an energy. In a dynamical
simulation, a new Gaussian contribution is added to the potential V (sα, t) every
given time interval, amounting to few hundreds of ordinary molecular dynamics
steps. A careful tuning of the two input parameters A(t ′) and Δs is required, since
these two quantities determine how accurate is the free energy landscape explo-
ration and how fine is the sampling of the reaction coordinates, respectively. Since

Fig. 2 Metadynamics
scheme. The local minimum
is filled with subsequent
small Gaussian functions
until saturation. The system
then escapes the local
minimum and goes exploring
another part of the free
energy landscape
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sα(t) are dynamical variables entering the extended Lagrangian, they have their own
equations of motion

Mα s̈α(t) = kα [sα(t) − sα(q)] + ∂V (sα, t)

∂sα(t)
(11)

that can be solved numerically by finite difference within the Verlet algorithm, i.e.,

sα(t + Δt) = 2sα(t) − sα(t − Δt) + 1

2Mα

{
kα [sα(t) − sα(q)] + ∂V

∂sα(t)

}
. (12)

In this way, since sα(t) represent also the center of the small Gaussian contribu-
tions to the penalty potential V (sα, t), the center of each Gaussian and its dynami-
cal evolution is self-selected by the code, driven by the associated Euler–Lagrange
equations of motion and does not rely on any user’s choice.

The free energy hypersurface F(sα) results as

F(sα) = − lim
t→∞ V (sα, t) + const., (13)

where the limit has to be intended in the sense that the metadynamics is continued
and Gaussians accumulated in the history-dependent potential until the selected por-
tion of the phase-space, spanned by {sα}, is completely explored. It can be demon-
strated that the addition of these Gaussian functions leads to a proper flat saturation
of the free energy (hyper)surface, provided that they are sufficiently small [30–33].

3 Reactive Biochemical Systems

The first application of a combined QM/MM and metadynamics approach to a
system of general biochemical interest targeted the adenosine triphosphate (ATP)
hydrolysis in a particular protein called heat shock cognate-70 (Hsc70) [34]. Its
curious name from the original discovery in cells exposed to high temperature. As
a response to the external increment of temperature, this protein is produced and
used to attenuate the external shock and to recover possible thermal damages to the
cell [4, 5]. Furthermore, Hsc70 has a wealth of important biological roles: protects
cells from stress, maintains cellular homeostasis, influences metabolism and mus-
cular adaptation, prevents ischemia, and acts as an anti-freezing agent [35, 36]. This
specific protein is structurally formed by three main blocks, an N-terminal ATP
synthase (ATPase) domain, a peptide-binding site, and a C-terminus. The chemi-
cally active part is the ATP domain where three phosphate groups PO4 are located
and chemically bound to each other in a chain as illustrated in Fig. 3.

The system used in hybrid QM/MM–metadynamics simulations is the active
mutant of Hsc70 named T13G as provided by the RCSB Protein Data Bank [37].
This corresponds to a set of Cartesian coordinates for the bare protein, obtained by
accurate X-ray crystallography. Yet, apart from few water molecules trapped in the
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Fig. 3 The three-phosphate chain of the ATP domain, common to any ATP system, with the stan-
dard labeling of the P and O atoms

pocket where the ATP domain is located, the natural environment in which proteins
and nucleic acids are present in vivo is not provided by these experiments. For this
reason, after downloading these set of coordinates, all the surrounding solvating
water has to be added and the system carefully equilibrated at fisiological (room)
temperature. For this reason we first solvated and equilibrated the protein at 300
K within a classical molecular dynamics framework using a standard Amber force
field [19]. After reaching the thermal equilibrium, the run was continued within the
QM/MM approach for about 5 ps to allow also for the electronic degrees of freedom
to equilibrate.

The Hsc70 T13G mutant is shown in Fig. 3. Since the target of the study was the
ATP hydrolysis reaction, ATP+H2O → ADP+Pi , the QM subsystem had to include
the three phosphorous atoms named Pα , Pβ , and Pγ and their chemically bonded
O atoms, the metal cations K+ and Mg2+, and their hydration water molecules.
Furthermore, the sp3 carbon atom chemically bound to Pα was included in the QM
calculation since it is easier to saturate its empty valence, across which the QM/MM
boundary passes, with a monovalent link atom [38, 39]. This amounts to a total QM
subsystem of 35 atoms. The reaction path sampling, performed via metadynamics,
made use of two collective variables; the first one is the distance s1 = O3

β − Hwater

between the O atom bridging Pβ and Pγ (O3
β) and a proton of a peculiar water

molecule identified as the catalytic one and indicated as pH2O in Fig. 3. The second
one was the distance s2 = Pγ − Owater between the terminal phosphorous atom
and the oxygen atom belonging to the catalytic H2O molecule which is expected to
dissociate and to participate actively to the reaction.

The simulations have been able to show that this specific water molecule, initially
belonging to the hydration shell of the metal cation Mg2+, present in the vicinity of
the β-phosphate, is indeed the trigger of the reaction. This justifies its name, found
in the literature and proposed few years ago on the basis of the X-ray data analysis:
putative catalytic water [40].

Upon dissociation, this water molecule donates one of its protons to the P-
bridging O3

β atom and this process starts the whole hydrolysis reaction. The free
energy landscape is shown in Fig. 4, where the snapshots (a), (b), and (c) indicate
the initial ATP configuration, the transition state, and the final product, respectively.
Two important issues were unraveled by these simulations: (i) the pathway followed
by both the proton H+ and the hydroxyl anion OH− after the dissociation of the puta-
tive catalytic water and (ii) the cooperative role of the metal cations K+ and Mg2+

in completing the reaction and promoting the release of the inorganic phosphate
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Fig. 4 The Hsc70 protein with the ATP center (QM subsystem) shown with stick and balls in the
inset. The ribbon is the ideal line connecting all the sp3 C atoms along the protein. The main atoms
involved in the reaction are labeled according to the standard notation

Pi via an exchange of the OH− hydroxyl anion between their respective hydration
shells. This is deeply different from the proton wire mechanisms [41] evidenced
in other proteins, such as actin [42], and lowers significantly the free energy bar-
rier, that for this specific reaction turns out to be ΔF∗ ∼ 3 − 4 kcal/mol, with
an overall energy difference ΔF = 6.9 kcal/mol between ATP and ADP, in good
agreement with the experimental outcome (7.1 kcal/mol). This is summarized by the
free energy landscape and the snapshots reported in Fig. 4. It is worthy of note that
the use of a different unique reaction coordinate, namely the coordination number
of the terminal phosphorous atom Pγ with any possible water molecule around,
gave an analogous reaction mechanism, triggered by the dissociation of exactly the
putative catalytic H2O molecule, with numerically identical activation and overall
free energies [34]. Such a small activation barrier means a very high reaction rate.
This is essential, for instance, to release the energy provided by the ATP-to-ADP
conversion and to prevent the freezing of the cell and the consequent crystallization
of the physiological water into ice that could break the cell membranes and kill
the cell.

A similar computational approach was used to study the proton transfer pro-
cess through transmembrane proteins, a fundamental step in cell respiration. One
of the most representative and better characterized protein is cytochrome c oxidase
(CcO), known to act as a one-directional proton pump. Recent researches focused
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on the identification, mainly based on analyses of X-ray crystallographic structure,
of possible proton transfer pathways in this peculiar protein present both in mam-
mals and in aerobic bacteria [6–8]. Its specific action is to pump protons across
the inner mitochondrial membrane or bacterial cytoplasmatic membrane and this
process is coupled with O2 reduction. On the basis of the X-ray data, two pathways
driven by two distinct hydrogen bond (H-bond) networks, called D-path and K-path
(Fig. 5), have been proposed [43, 44]. These pathways are named with the letter that
identifies their respective main residues, D91 (aspartic acid) and K319 (lysine) in
bovine CcO.

These networks are formed by side chains of amino acid residues and crystal-
lographically ordered H2O molecules. Both are considered to be active pathways
along which protons can be transferred via a Grotthuss-like [45] proton wire mech-
anism [41]. In particular, both the K- and D-paths involve an H+ propagation along
a fully connected H-bond network until the proton reaches a heme redox center (see
Fig. 5). Then the proton continues its trip inside the cytochrome c oxidase and is
eventually pumped outside the inner cytoplasmic membrane. These two pathways
are realized by a series of Eigen–Zundel transitions [46, 47], typical of proton prop-
agation in H-bond networks, in which the proton is transferred sequentially from a
donor to an acceptor.

Fig. 5 ATP hydrolysis in Hsc70. The initial system (a) reaches a transition state (b) via deprotona-
tion of a specific water molecule. This results in the bond cleavage Pβ–O3

β–Pγ → Pβ–O3
β Pγ with

subsequent ADP formation and release of the inorganic phosphate (c). The two collective variables
used in the metadynamics are the distances s1 = O3

β − Hwater and s2 = Pγ − Owater shown by the
arrows
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Extensive studies have been published on the subject [48, 49]; without any claim
of completeness, let us recall that whenever a single proton is released in water,
its positive charge experiences an electrostatic attraction from surrounding nega-
tive charges. Now, in water, negative charges are represented by lone pair electrons
located on the O atoms of H2O molecules. The proton can then approach a water
monomer and form an extra O H bonds becoming an hydronium OH+

3 . Such a
system is characterized by a net charge Q = +1 and structurally appears as a tri-
angular pyramidal structure in which the O atom is the vertex and the three bonded
protons form the base and are hydrogen bonded to the O atoms of surrounding water
molecules as sketched in the left panel of Fig. 6. Such a configuration is termed
Eigen complex.

Since three O H bonds, for a single O atom, do not represent a steady state, one
of the three protons of OH+

3 departs on a picosecond timescale and the hydronium
reverts to a water molecule. Here a first difficulty in the proton transfer process
arises: the proton that departs from OH+

3 is not necessarily the one that arrives.
As a consequence, the motion of a proton in a H-bond network is not the motion
of a single particle in a medium. In jumping from one molecule to the next one,
the proton experiences two almost equivalent attractive forces from the lone pair
electrons of the two H-bonded H2O monomers. As a result, for a certain time, again
of the order of the picosecond, the proton jumps between the two molecules with a
rapid switch between an O H σ -bond and a hydrogen bond in a typical Grotthuss
mechanism [45]. The proton sits on average between two H2O molecules in a Zun-
del complex (right panel of Fig. 6) and can be seen as a shared proton rather than an

Fig. 6 Schematic view of cytochrome c oxidase and the three possible proton propagation paths.
The K-path (on the left) and the D-path (at the center) drive the proton to a heme redox center.
Along the H-path (on the right), instead, the proton is directly expelled outside the inner membrane.
The insets show the QM system and the specific collective variable used
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atom chemically bound to a given O site. Given this scenario, the propagation of a
proton in a H-bond network can only be described as a series of continuous switches
between an Eigen and a Zundel complex. In this respect, the traditional concept of
transition state is not applicable [50].

In the case of CcO the H-bonds of the migrating hydronium OH+
3 are formed not

only with water molecules, present along the path and crystallographically identi-
fied, but also with O or N atoms belonging to side chains and residues facing the
proton pathway.

As far as the H-path is concerned, its novelty stems from the presence of a pep-
tide group in the pathway that interrupts the regular H-bond network and could,
in principle, hinder the proton propagation. Contrary to the two paths described
above, although the H-path still consists mainly of an H-bond network, a peptide
group located between two residues, Tyr440 and Ser441, and shown in the inset of
Fig. 5, is present on the pathway and breaks the H-bond network into two parts [51].
The traveling proton finds then an obstacle that cannot be overcome by an ordinary
Eigen–Zundel mechanism. In fact, the crossing of a chemical bond, instead of the
propagation along the weaker H-bonds, by a proton represents a non-trivial process
that made for a long time questionable the viability of the H-path.

Recent simulations within the metadynamics approach [52, 53] were performed
targeting this particular step in the H-path in an attempt at investigating whether or
not such an anomalous proton transfer could occur. Specifically, two possible alter-
native pathways were investigated. The first one involves a double-proton transfer,
one from the nitrogen site N1 to N2 and one from the oxygen site O1 to N2. Such
a simulation involved the simultaneous use of two collective variables s1 and s2

indicated in the inset of Fig. 5: s1 is the distance H2 to N1, while s2 is the distance H1

to N2. These distances account for the proton transfer from N2 to N1 (s1), necessary
to pump a proton above the peptide group, and for a second proton transfer from
O1 to N2, necessary to restore the protonation state of the N2 site and to make O1

ready to accept the next proton coming (via Grotthuss mechanism) from the inner
membrane of the system.

In a second simulation, a direct proton transfer from O1 to N1 was simulated,
using as a unique collective variable s3, corresponding to the distance of the proton
H1, initially bound to the acceptor site O1, to the site N1 to be protonated. Such
a setup corresponds to a direct jump of the incoming proton across the peptide
bond, without including any other atom but the two directly involved in the H+

propagation process.
The results have shown that, provided that the double-proton transfer pathway

occurs, protons can indeed cross this blocking peptide group without inducing any
permanent conformational change to the system, which keeps its experimental struc-
ture at the end of the reaction. This makes the simulated mechanism compatible with
all the known X-ray data. This kind of reaction is known as tautomerization and has
been shown to occur in several systems characterized by an analogous chemical
structure, such as, for instance, in polyglycine enol-to-keto transformations [54].
Indeed, this is the actual rate limiting step in the peptide group crossing process and
involves the overcoming of a relatively small free energy barrier (13 kcal/mol).
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Conversely, to realize the direct proton transfer from O1 to N1, important geo-
metrical modifications, inducing large bond stresses, are required. As a result a
very large free energy barrier, amounting to more than 60 kcal/mol, characterizes
this pathway, making it very unlikely. Moreover, large structural modifications are
required for this pathway, thus making it incompatible with the experimental crys-
tallographic structure.

These simulations have represented the first atomic-level inspection and the first
support to the H-pathway in bovine CcO. As such, they have been able to comple-
ment the experiments and to offer a direct insight into a crucial part of the proton
propagation mechanism not directly accessible to experimental probes.

Another interesting case in which proton transfer processes are crucial, yet pecu-
liar, is represented by charge propagation along a double-stranded DNA system.
Charge transfer processes in native and synthetic DNA have been at the center of
intense studies. Besides its basic biological importance [13, 55], potential nanotech-
nological applications are being pioneered [56, 57]. In fact, DNA is a stable polymer
with a strong self-assembly one-dimensional character that seems well suited for the
engineering of molecular junctions and nanoarrays [58, 59].

Recent experiments [9, 10, 60] have provided a novel insight into charge transfer
processes in DNA; the general picture that emerges is that the charge displacement,
especially holes h+, from a Guanine–Cytosine (G:C) base pair to another one along
the strand is accompanied by a deprotonation of the G-base of the base pair where
the charge is localized after having been displaced. In this respect, here the proton
transfer is not the main actor, but rather the helper, a sort of gate able to open or to
close the door to the passage of electronic charge along the DNA double helix.

In an attempt at recovering the microscopic picture of this mechanism, hybrid
QM/MM simulations on a fully hydrated DNA system, coupled to the metadynam-
ics approach, were performed [61, 62]. An equilibrated and fully hydrated double-
stranded B-DNA amounting to 20,265 atoms, 5,902 solvating water molecules, and
238 atoms in the QM subsystem was adopted. The QM part consists of five base
pairs corresponding to the segment 5′−GTGGG−3′, namely a G:C base pair sepa-
rated by other three G:C pairs by one intercalated A:T (adenine–thymine), similar
to the sequence used in the cited experiments.

The collective variable selected to simulate this process was the coordination
number of the N atom of a C-base, labeled as N1 in Fig. 7 with nearby H-bonded
protons. If the proposed mechanism is correct, then protonating this N site should
lead to a charge localization on the G-base H-bonded to this C upon deprotonation
of this G.

Indeed, the mechanism reproduced by the simulation and shown in Fig. 7 pro-
vided a direct evidence for the proposed hole transfer mechanism. Namely, the
charge is transferred from a G:C base pair to another one in a coherent single step,
involving a double-proton exchange process. Starting from a regular G:C configu-
ration, shown in the left panel in the scheme of Fig. 7, a temporary deprotonation
of C occurs indicated in the middle panel as a shift of the upper black ball from G
to C; this step, although being a transient stage, is crucial since it confers an acid
character to the G-base that becomes ready to release protons. In the absence of
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Fig. 7 Eigen complex [H3O · (H2O)3]+ (left panel), with the OH+
3 at the center, surrounded by

its three hydrogen bonded H2O molecules and Zundel complex [H · (H2O)2]+ (right panel) in
which the extra proton is shared between two water molecules. H2O molecules are represented
as v-shaped stick and balls (H atoms are black and O atoms dark-gray), dashed lines indicate
H-bonds, and the shared proton in the Zundel complex is labeled as H+ and shown as a black ball

this auxiliary proton transfer, a G-base is pretty stable and no proton transfer would
occur, hence the gate to the charge transfer would not open. On the other hand, in
the conditions induced by this temporary proton transfer, the N1 site of C accepts
a proton from G that, in turn, becomes deprotonated. Then the temporarily shifted
(from C to G) H+ is donated back to C, leaving behind a deprotonated G−H base.

Fig. 8 Free energy profile for the double-proton exchange mechanism for a hole (h+) transfer in
a G:C base pair of DNA obtained by metadynamics, assuming as a collective variable the coordi-
nation number with H of the N atom of the C-base labeled as N1 and facing its H-bonded G-base
N site. The two protons involved in the process are shown as black balls. Dashed lines indicate
H-bonds
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When this deprotonation occurs, the charge displaces along the DNA and localizes
on this G−H:C+ site as shown in Fig. 8.

The free energy barrier for this process was estimated to be about 7 kcal/mol, as
can be easily seen from the reported curve, with the final minimum lower in energy
by 2–3 kcal/mol. Upon hole extraction and re-protonation of this site, the relative
stability of the two minima is reversed and the charge can migrate elsewhere, as
indicated by the schematic loop in the figure.

These results have found recently an indirect confirmation in the analysis of the
oxidation of a guanine nucleobase to its radical cation in DNA oligomers [63].
These experiments were able to show that oxidation processes are responsible for
an increase in the acidity of the N amino proton of G. This increase of acidity, in
turn, is able to lead to a spontaneous proton transfer from the G-base to the N1 site
of the paired C-base.

Hence, the displacement of protons from one base to the nearby one along the
H-bonds between the two coupled bases plays the role of a sort of gate, opening
the door to the flowing charge and promoting its transfer along the double-stranded
DNA. Once the gate is open, the electronic charge can either flow along the phos-
phate backbone or make a direct hopping to G−H:C+. These results have been
regarded as a first support to the mechanism proposed on experimental grounds and,
at the same time, as a complement to the experimental results obtained both from
H/D isotopic substitution and from electron paramagnetic resonance [9, 10, 60].

Fig. 9 Migration of an injected hole charge from the initial G:C base pair to the proton-shift site
G−H:C+ along the double-stranded DNA system. The thick black arrow indicates the direction of
the charge migration, represented by the black isosurface
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4 Conclusions

The overview presented here, covering just a limited number of examples of com-
putational approaches suitable to study chemical and catalytic reactions in complex
biological systems, is far from being complete and exhaustive of such a rapidly
developing field. Within the limitations of the present contribution, I just aimed
at offering to the reader a hint about what is possible nowadays, with the present
computer facilities and methodologies, to theoretically investigate biomolecular
systems. The examples reported refer to some of the more recent approaches and
algorithms that can be used in the simulation of biochemical reactions of practi-
cal importance and how they can be used to either complement the experimental
information or to perform virtual experiments aimed at making predictions and to
support the experimental investigation.

Specifically, the selected examples, taken from recent applications, are shown to
offer the reader a direct view of the kind of information that can be obtained by
applying these methods to specific problems of general biological and nanotech-
nological interest. Many more examples are available in the rich literature, part of
which is reported in the references included, and that can provide a wider scenario
and a more complete panorama to researchers interested in this field.

In a sense, the few examples discussed here, as well as the ones reported so far
in the literature, show also the limitations that still exist in dealing with complex
biosystems and how simulations must be carefully focused in order to achieve some
useful outcome. Indeed, the combined use of hybrid approaches and free-energy
sampling methods allows to inspect in great detail non-trivial biochemical reactions,
taking into account the whole system (and its solvent) without relying on smaller
models extracted from the whole system. In fact, smaller models are often insuf-
ficient to reproduce all the features of the real system. Yet, the study of chemical
reactions is limited to the small portion of the system tractable by quantum mechan-
ical approaches and this, in turn, has to cope with the many-body approximations
involved in these first-principle/ab initio methods.
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pus dendrimers with block anisotropic side-arms, segmented amphiphilic block
codendrimers, multicore and star-shaped oligomers, and multi-functionalized man-
ganese clusters. The molecular organization in lamellar or columnar phases occurs
due to soft/rigid parts self-recognition, hydrogen-bonding networks or from the
molecular shape intrinsically.

1 Introduction

The arborescent dendritic structure is one of the most pervasive, prolific, and influ-
ential natural pattern that can be observed on earth, at all dimension length scales
(from nanometre to kilometre), at once in the inert, the virus, and the living worlds
[1–4]. Such a natural hyperbranched architecture has reached an unrivalled level of
perfection and provides maximum interfaces for efficient contacts and interactions,
as well as for optimum information collection, transport, and distribution. The elab-
oration and the synthesis of such aesthetically challenging architectures have been
driven by the need to mimic the macroscopic natural branching networks and to
convey their functions at the molecular level. Dendrimers and dendrons (or elemen-
tary dendritic units) may be considered as polymers with geometrically restricted
structures [3, 4].

From another point of view, molecular engineering of liquid crystals (LC) is an
important issue for controlling the self-assembling ability and the self-organizing
processes of single moieties into periodically ordered meso- and nanostructures
[5]. Moreover, ordered supramolecular assemblies can considerably enhance the
functions of the single molecule [6, 7]. Dendrimers, dendrons, dendronized and
hyperbranched polymers have proved particularly versatile candidates as novel and
original scaffoldings for the elaboration of new LC functional materials and research
in this area has experienced an outstanding development during the last years,
overlapping polymer chemistry and supramolecular chemistry [8–14]. In particular,
the dendritic structure appeared as an interesting framework where mesomorphism
can be modulated by very subtle modifications of the intrinsic dendritic connec-
tivity. LC dendrimers are now representative of an important class of mesogens
where new types of mesophases and original morphologies may be discovered
[8–14].

Along this line, understanding the mesomorphic behavior of molecules with
novel architectures or complex chemical systems has always been a challenge in
spite of the development of accurate analysis techniques such as small angle X-ray
diffraction (XRD) or dilatometry. Theoretical simulations of liquid crystals took
benefit from the considerable increase of the speed of computers in the recent years
and can be now used as a supplementary tool to help experimentalists discriminat-
ing between several possible structures. There are many different techniques that
can be successfully used for the simulation of liquid crystals [15–17] that differ
from each other by the range of length and timescales of the model: from fully
atomistic molecular model to mesoscopic physical systems, and from femtoseconds
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to microseconds timescales. Among molecular-based methods [18] we will focus
only on atomistic methods in the present work.

Most of the computer simulations of liquid crystals are focused on the modelling
of well-known materials such as nematic cyanobiphenyls and the calculation of their
theoretical properties, i.e., phase transition temperature or nematic order parameter.
The common techniques used to perform the thermodynamic equilibration of the
systems are molecular dynamics (MD) or Monte Carlo (MC) methods, and many
published studies are based on coarse-grained or mesoscale models. Such simula-
tions often use a physical representation of the whole molecule as objects with a
given shape (cylinder, rod, disc, sphere, etc., or combinations of them) interacting
with a Gay–Berne potential [19], or as particles driven by the dissipative particles
dynamics (DPD) technique [20]. They are unbeatable to modelize a large num-
ber of molecules during a long time and thus to predict the formation of original
mesophases [21]. Nevertheless the efficiency of these methods drops if they are
used with molecules with shape or electrostatic properties different from those they
were specifically designed for, although they can fit many kinds of molecules [22],
and even dendrimers [23].

Due to the very long simulation times – tens of nanosecond – and the number
of molecules in the model – hundreds – that are necessary to achieve a good level
of accuracy in the calculation of bulk properties of the material (even for simple
rod-shaped molecules), atomistic-level models are very consuming in computational
resources and therefore quite uncommon for liquid crystal modelling. Fully atom-
istic models (in which every atom of the molecule is explicitly described) although
have been proved successful for the calculation of some physical properties [24–26]
with a lot of development in tuning the force fields [27] to fit the transition tempera-
tures [28, 29] or/and with using a hybrid approach where some groups of atoms are
represented by a single site (united atom) [30, 31]. All this development is necessary
to reduce the consumption of computational resources and increase the time step of
the MD simulations, and therefore permits much longer calculations. Nevertheless,
fitting the force fields also takes a long time and must be done on well-known mate-
rials, so it may not be safe to use these methods on novel molecules.

If the aim of the study is not to study a phase transition in extenso or a prop-
erty that has to be averaged from a huge number of conformations, we can save a
large amount of calculation time by studying only a local arrangement of the system
during a reasonable time window and to construct the starting conformation of the
model in a clever way so that we can reach the thermodynamic stability even with
all-atom simulations.

The materials discussed in this chapter have been studied using the Discovery
molecular mechanics software from Accelrys. For a single molecule, atomic charges
are first calculated from a semi-empirical quantum mechanics AM1 calculation or
set by the typing rules of the software if no subsequent problem is dreaded about
this. Then models were built as periodic boundary condition (PBC) cells in pseudo-
2D or 3D symmetries by assembling by hand a given number of molecules, accord-
ing to X-ray diffraction experimental information (periodicities and molecular areas,
Fig. 1). For lamellar phases, mono or bilayers are built in a cell with x and y
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Fig. 1 Schematic representation of the PBC used for the lamellar and columnar phases

dimensions set according to the experimental molecular area, and z dimension set
arbitrarily large so that no interactions can occur in that direction (this simulates
a 2D periodicity along the xy plane). Concerning the columnar phases, assemblies
of molecules are constrained in the z-axis in a flat cell with large x and y dimen-
sions (kind of pizza box) that simulates an individual column with a periodicity in
the z-direction. The energy relaxation and the MD thermodynamic equilibrium of
the systems were performed in the NPT ensemble using some general-purpose and
well-validated force fields available in the software (cvff, pcff, or esff). The resulting
structures are then compared to experimental data to validate the self-association
assumptions used to build the model.

In this chapter, we will report on a few examples of self-organization behaviour
of some novel materials based on liquid-crystalline dendritic architectures. The
original design of the molecules imposes the use of all-atomic methods to model
correctly every intra- and intermolecular effects. The selected materials are octo-
pus dendrimers with block anisotropic side-arms, segmented amphiphilic block
codendrimers, multicore and star-shaped oligomers, and multi-functionalized man-
ganese clusters. The molecular organization in lamellar or columnar phases which
has been observed occurs due to soft/rigid parts self-recognition, hydrogen-bonding
networks, or from the molecular shape intrinsically.

2 Octopus Dendrimers

The insertion of rigid and linear segments within dendritic scaffolds leads to the
class of the so-called main-chain systems. Regarding the structure of these den-
drimers, the junctions are no single and spherical atoms (C, N, P, Si, etc) but consist
of anisotropic molecular moieties instead [3, 4]. These units are linked together
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Fig. 2 Schematic representation of a main-chain dendrimer. The rectangles represent the rigid and
linear segments (anisotropic mesogenic moieties) and the thin lines the flexible aliphatic spacers

through long and flexible alkyl spacers, generating therefore the dendritic matrix
(Fig. 2).

As far as self-organization into mesophases is concerned, the anisotropic groups
present at every level of the dendritic hierarchy are responsible for some loss of
conformational freedom with respect to their homologues with more flexible and
deformable core, such dendrimers being forced to adopt more constrained molecular
conformations. Consequently, the anisometric branches do not radiate isotropically,
but, on the contrary, favour preferentially an anisotropic order at an early stage of
the organizing process by a gain in the enthalpy of the system, in order to produce
the most stable structure. More precisely, for the octopus dendrimers, these confor-
mations result from the coupling of segmented and symmetrical dendritic branches
containing mesogenic moieties at each generational level (junction) onto a small
tetra-podand core.

The dendrimers bearing one terminal aliphatic chain per peripheral unit (Fig. 3,
1, X: =/≡ and Y: ≡, R1 = R3 = H, and R2 = OC12H25) exhibit smectic phases;
in contrast, none of the precursory branches was mesomorphic. The mesomorphic
behaviour was explained by the elongated (prolate) molecular conformation adopted
by the dendrimers. Indeed, the lamellar periodicities were rather large (10–12 nm),
consistent with a fully stretched molecular conformation, and with the mesogenic
groups homogeneously distributed on both sides of the tetravalent core [32]. The for-
mation of the smectic phases resulted therefore from the parallel disposition of these
giant rod-like supermolecules into layers. In this case, the structure of the smectic
phases is quite unique and consists of a highly segregated, sublevelled, molecular



104 C. Bourgogne et al.

O

HN

O

HN

N

O

NH

O

NH

N

X

O

O

O

O
Y

Y
R2

R3

R1

R2

X

O

O

O

O
Y

Y
R2

R3

R1

R2

X

O

O

O

O
Y

Y
R2

R3

R1

R2

X

O

O

O

O
Y

Y
R2

R3

R1

R2

R1

R1

R1

R1

R3

R3
R3

R3

X, Y:        ,

R1,R2,R3=H or OC12H25

Fig. 3 General chemical structure of the octopus dendrimers, 1

organization made of an internal sublayer containing tilted rigid segments (segments
of the first generation, randomly tilted to compensate the molecular area), flanked
by outer slabs inside which the mesogenic groups are arranged perpendicular to the
layer (Fig. 4); these various sublayers are separated by the aliphatic continuum.

Molecular modelling supports this view of strongly segregated multilayer struc-
tures, with interfaces between the various molecular parts. Indeed, as already men-
tioned, one can realistically assume an elongated conformation for the dendrimer,
where the rigid parts are colinear to the layer normal. To allow the formation of
lamellar mesophases, the overall molecular structure ought to adopt such a parallel
conformation, with the elementary mesogenic units arranged in a pseudo-parallel
fashion, with necessarily half of the mesogenic units extending up and the other
half extending down the molecular centre [33–35]. As such, the molecular model
of the smectic layer consists of a tetragonal periodic cell in which the cross-section
was set to match roughly the molecular area of four mesogens in a smectic phase
(10 × 10 Å2). The third parameter of the cell was fixed at 150 Å, much longer than
the length of the fully extended dendrimer in order to simulate a single layer and to
allow the molecules to expand or shrink freely. The molecular dynamics simulation
was then performed on this model to evaluate the dendrimer conformation within
the smectic layer. The result of these calculations is represented by the molecular
snapshot in Fig. 4 and the estimated molecular length (ca. 90–100 Å) was found to
be in very good agreement with the periodicities measured by XRD (ca. 100 Å).

Thus, the morphology of the smectic phases generated by such multiblock
molecules is rather unusual in that it possesses a two-level molecular organization
each being dependent of the other one. It consists of an internal sublayer made of
tilted rigid segments with no correlation of the tilt and outer slabs inside which the
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Fig. 4 Modelling and schematic representation of the multilayered smectic phase structure

mesogenic groups are arranged perpendicular to the layer. Obviously, all the “hard–
soft” interfaces are not so well defined due to thermal fluctuations in mesophases.

In contrast, the increase of the chain/end-group ratio prevents such a parallel
disposition of the pro-mesogenic groups, and the octopus dendrimers bearing two or
three aliphatic chains per outer mesogenic unit (Fig. 3, 1: X, Y: =/≡, and R1 = R3 =
OC12H25 and R2 = H, or R1 = R2 = OC12H25 and R3 = H, or R1 = R2 = R3 = OC12H25)
formed systematically an hexagonal columnar mesophase (Colh phase) [32, 36].
The formation of these columnar superstructures is a consequence of the mis-
match between the surface areas of the aromatic cores and the cross-sections of the
aliphatic chains, resulting in the curvature of all the interfaces, as in polycatenar liq-
uid crystals [37–39] and dendromesogens [40]. Consequently, the octopuses adopt
a wedge-like conformation (or cone-like), authorized by the great flexibility of the
zeroth generation polypropyleneimine (G0-PPI core), allowing the pro-mesogenic
groups to be radially distributed with uniform interfaces at the different generational
levels. With such a folded or fan conformation, the dendrimers self-assemble into
(supra)molecular discs or columns which further self-organize into a hexagonal net
(Fig. 5). Depending on the number of terminal chains per terminal mesogenic units
(2 or 3), three- or two-folded dendrimers, respectively, can perfectly pave the hexag-
onal lattice, consistent with the hexagonal parameters (9–10 nm). Considering the
diblock, alternated chemical nature of these dendrimers, a leek or onion morphology
for the columns is most likely (intracolumnar segregation) (Fig. 6).
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Fig. 5 Schematic representation of two possible molecular conformations (a, b) of the octopus
dendrimers 1 and their self-assembling processes into columns (i, ii)

Fig. 6 Snapshot of the molecular conformation and self-organization of octopus dendrimers (1) in
the columnar obtained by molecular dynamics calculation. The parts in grey and black represent
the aliphatic and aromatic parts, respectively. Inset: wedge-like conformation of the dendrimer



Molecular Dynamics Simulations of Liquid Crystalline Dendritic Architectures 107

This proposed model of a multi-segregated internal structure of the columns was
supported by molecular dynamics: for one dendrimer, a periodic molecular model
was built from the experimental X-ray data, that is, a hexagonal lattice with a 97
Å parameter and a thickness of 4.5 Å, paved with three molecules in a flattened
wedge conformation. The result of the calculation (Fig. 6) evidenced a good filling
of the available volume, acknowledged by a calculated density of 0.95, and good
segregation at the molecular level by means of interlocked concentric crowns of
anisotropic units belonging to the same generation (each crown, separated by “inert”
aliphatic films, being further stabilized by intermolecular interactions). An enhance-
ment of the micro-segregation over the entire simulation experiment time was also
observed, contributing to the stabilization of the onion structure. Furthermore, the
compensation of the molecular areas at the various interfaces at every level of the
arborescence, which implies the tilt of the internal and external rigid segments with
respect to the radial directions, was also shown in the modelization (Fig. 6).

3 “Janus-Like” Diblock Codendrimers

The second example describes the self-organization of some amphiphilic diblock
codendrimers (supramolecular dendromesogens) where the two compartments of
the dendrimers have different chemical nature and affinity. The concept of
amphiphilicity in synthetic dendrimers is quite recent and has been successfully
used for example to obtain unimolecular micelles for drug encapsulation and trans-
port [41], to mimic the aggregation of globular proteins [42], or in therapeutic appli-
cations for their recognition ability towards protein receptors or biomedical materi-
als [43, 44]. Such amphiphilic dendrimers have also a potential use as catalysts of
organic reactions in aqueous solutions and phase-transfer agents [45, 46].

In this section, we consider the self-assembling behaviour of new amphiphilic
codendrimers of the Janus type [47] which can be considered as building blocks for
self-ordered mesostructures [48] into Colh mesophases. Various structural param-
eters were selectively modified in order to establish relationships between the
molecular structure (control of the hydrophilic/hydrophobic balance and hydrogen-
bonding ability) and the self-organization properties into liquid-crystalline phases.
These parameters include the generation numbers of both the hydrophobic (poly-
benzyl ether block) and hydrophilic (polyol block) parts which have been changed
independently and the terminal chain substitution (Fig. 7).

Dendrimers having the second dendritic generation hydrophilic lobe(six hydroxyl
groups,compounds 2 and 3) were mesomorphic, exhibiting a columnar hexagonal
Colh [49]. The Colh phase was deduced from the analysis of the X-ray diffrac-
tograms.

For these dendritic hexol compounds, the great size of their polar parts with
respect to their apolar parts, and particularly true for the G1 compounds (2), could
in principle favour the formation of normal phases (i.e. with a positive interfacial
curvature), and therefore, self-organization into a columnar phase resembling the
H1 phase observed in lyotropic systems [50] could not be immediately excluded.
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Recall that in such a normal phase, the polar heads of the molecules are directed
outwards the core to form a hydrophilic outer-wall interface, whereas the internal
core is filled by the lipophilic fragments. In the case of the lyotropic systems, such
an arrangement is even more facilitated since it occurs in the presence of a polar
solvent like water (binary system). In these conditions, the solvent contributes to the
swelling of the polar part, to the dilution of the H-bonding network, to the smoothing
of the interface by counterbalancing the geometric constraints, and to the fluidity of
the system by filling the empty cavities. However, this normal arrangement seems
very unfavourable in anhydrous materials and up to now only two examples of nor-
mal phases (Colh and cubic phases) have been reported in thermotropic systems
[51, 52]. Indeed, if such an organization into normal columns was true here, the
honeycomb structure, which would be extended in the third direction in the present
case, generated by the H-bonding network would be too rigid to be compatible with
a fluid mesophase, contrasting with the high fluidity of the mesophases as observed
by polarized light optical microscopy (POM). Consequently, the classical inverted
model has thus been considered for the description of the molecular arrangement of
these amphiphiles.

The geometrical structural requirement necessary to induce an inverted columnar
phase (negative curvature of the interface, i.e. when the apolar chains irradiate out
of the columnar spines) is a priori satisfied only for the G2 derivatives (3). Indeed,
four or six side-chains cover the periphery of the dendron and form the wide end,
whereas the narrow end is constituted of polar hydroxy groups. When the chains are
molten, the mismatch at the polar/apolar interface is further enhanced, favouring the
microsegregation of these tapered molecules into cylindrical structures. Thus, it is
first assumed that all dendrimers self-assemble in such a way that the polar apices
segregate to form the polar columnar core of the cylindrical micelle, further stabi-
lized by a dense and interlocked H-bonding network. The wall of the inner colum-
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nar core (hydroxyl–dendritic interface) is surrounded by the hydrophobic branches,
with the aliphatic chains radiating laterally. In order to pave the hexagonal lattice
efficiently, the molecules, radially oriented, are packed side by side to form a thick
disc slice as in a pizza.

To validate this assumption and to propose a model for the self-organization
within the Colh phase, it was thus necessary to perform molecular dynamics. Using
a geometrical approach, the hexagonal cell 4.5 Å-thick contains 5.35 molecules 2a
(D = 45.7 Å, Vmol = 1 520 Å3 at T = 130◦C). Considering the general hypothesis of
a mesophase based on supramolecular columns with a polar interior core, there is no
effective possibility to arrange 5.35 of these mesogens in such a cell which respects
both a perfect paving of the hexagonal 2D lattice (2a possessing only two aliphatic
chains) and a good agreement between molecular and mesostructure dimensions.
Indeed, the bulky polar fragment occupies a large volume not easily compensated
by the reduced number of aliphatic chains per molecule. A solution to this problem
was given by computer modelling. The optimization of the geometry by molecu-
lar dynamics at 130◦C, temperature of the X-ray experiment, led to a hexagonal
lattice (with D = 45.7 Å fixed before calculation) with a thickness of 13.5 Å and
containing 16 molecules in this cell (these quantities correspond to the same ratio
of 5.35 molecules per stratum 4.5 Å-thick, and thus to the same packing density).
Comparing the molecular dimensions and the lattice size, the best compromise is
found when the 16 molecules are placed into two strata of 6.75 Å-thick, each stra-
tum containing 8 molecules disposed in such a way that they form a cylinder and
occupy the available space homogeneously (Fig. 8). In this simulation, the relative
disposition of the molecules is not random, the latter adapting their shape in order
for the polar segments to be localized in the central part of the discs, i.e. in the
interior of the column (Fig. 8) to allow strong H-bonding interactions. The den-
sity ratio calculated at 130◦C estimated from MD and XRD was found to be very

Fig. 8 Snapshot showing the organization of 2a in the Colh phase (in dark polar central core). Only
one layer (6.75 Å) is represented, the apparent empty zones, being actually filled by neighbured
layers
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close to unity (0.995), supporting this arrangement. The relative size of the region
occupied by the polar parts is also rather large with respect to that filled by the
aliphatic and aromatic parts, therefore suggesting here that the dominant driving
force for the mesophase formation is clearly the hydrogen interactions between the
hydroxy groups, necessary to stabilize the columnar polar spine, the chains forming
the infinite continuum.

Similarly, we also resorted to molecular dynamics to understand the packing of
3a in the Colh phase. In this case, the cross-section of the polar part is comparable
to that of the aliphatic part, and thus a lamellar structure was expected instead of the
Colh phase. It appeared that for a lattice parameter (D = 49.8 Å, Vmol = 2 505 Å3 at
T = 100◦C), a slice 4.5 Å-thick would contain four molecules, which is not satisfying
with an efficient paving of the lattice (discrepancy between molecular dimensions
and columnar cross-section). However, the result of the molecular dynamics calcu-
lation suggested that it was preferable to consider a stratum with a thickness of 9.0
Å containing eight molecules to obtain good filling of the available volume, with
the relative disposition of the hydroxy groups which, through efficient H-bonding
interactions, are able to ensure the stability of the polar column, as shown in Fig. 9.
The density ratio estimated from MD and XRD for this packing at 100◦C (1.036)
shows the good agreement with the model.

As for 2a, the main driving force for the Colh formation of 3a is the impor-
tance of the H-bonding interactions which stabilized the overall architecture, as
proven by the modelization. For both 2a and 3a, a good agreement is observed
between the results obtained by XRD and those issued from MD. Despite the a pri-
ori incompatible molecular conformation, either an inverted triangular shape (2a)
or a quasi-cylindrical shape (3a, quasi-equivalence of the two lobes, with a near
zero-interfacial curvature), a good segregation in columns is nevertheless being
achieved between the polar hydroxy parts and the aliphatic parts: the columns
are stabilized by H-bonding interactions (2a, 3a) and van der Waals interactions

Fig. 9 Snapshot showing the packing of 3a after MD in the hexagonal 2D lattice of the Colh phase
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Fig. 10 Snapshots of packing of 2b (a) and 3b (b) after MD in the hexagonal 2D lattice of the
Colh phase

(3a), the latter then self-organizing into a hexagonal honeycomb packing, i.e. Colh

phase.
Conducting this analysis with 2b (D = 50.35 Å, Vmol = 1860 Å3 at T = 140◦C)

and 3b (D = 54.15, Vmol = 3150 Å3 at T = 100◦C) led to similar idealized represen-
tations (Fig. 10). Ten molecules are needed over a thickness of 8.47 Å in the case
of 2b, while for 3b, eight molecules are necessary to fill a cylinder 9.76 Å thick.
MD shows the good agreement between molecular and mesophase dimensions,
with an almost perfect paving of the 2D lattices. As can be seen by the MD snap-
shots (Figs. 8–10), the filling of the available space is more efficient with increas-
ing terminal aliphatic chains (a→b) and with increasing generation (2→3), as
expected.

Of course, let us recall that all these molecular models are static and local
representations only of a more dynamic and macroscopic reality, but are signifi-
cantly descriptive and useful to explain the supramolecular organization of all these
dendrimers within the hexagonal columnar phases. This is why for instance the
polar cores do not appear circular but rather distorted in shape instead. Averaging
these local arrangements over larger assemblies with random (not correlated) main
orientation leads effectively in the timescale of the experiment to columns with cir-
cular polar cross-sections, compatible with the symmetry of the mesophase.

4 Self-Organized Hybrid Siloxane-Triphenylene
Star-Shaped Heptamer

The third example concerns flat, π -conjugated discotic molecules [53, 54], already
used in phase compensation films of liquid-crystalline devices [55]. They offer a
unique possibility as potential 1D charge-carrier systems [56] due to their abil-
ity to self-assemble into long-range 1D intermolecular columnar stackings and
then into columnar organizations, preferentially the hexagonal columnar phase
(Colh). Electronic interactions as well as electrons and excitons migrations are
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indeed strongly favoured within the columns since the stacking periodicity along
the column is much shorter than the intercolumnar distance. As such, discotic liq-
uid crystals are seen as promising organic semiconductors for applications in the
domain of molecular electronics, optoelectronics, photoconductivity, photovoltaic,
and electro-luminescent devices [57–61]. Moreover, the liquid-crystalline state also
offers many alternative advantages to organic monocrystals in that they can be
more easily macroscopically aligned (monodomains) and processed, and structural
defects can be self-healed because of the molecular fluctuations. However, the lim-
ited efficiency of the charge-carrier mobility (10−3 to 0.1 cm2V−1s−1 compared
to that found in graphite of 3 cm2V−1s−1) [62], an essential parameter to esti-
mate for an optimal design, is in part due to the lack of long-range order of the
intra-columnar stacking in the liquid-crystalline mesophase (topological defects,
thermal fluctuations, and molecular diffusion). The improvement of these prop-
erties requires perfectly stable monodomains of the materials, ideally operational
at ambient temperature. Various methods for increasing the extent of ordering,
facilitating the processing, and improving the performances of the charge mobility
have been employed. Among these, the freeze-in of the columnar order into stable,
room temperature glasses appear to be an attractive strategy since the anisotropic
properties and macroscopically aligned monodomains can be easily vitrified and
the ordering preserved. For such prospects, triphenylene-containing liquid crystals
(oligomers, elastomers, networks) have been the most extensively studied discotic
materials [53, 54, 57, 59–61, 63, 64] and have been reported to address these
points.

More recently, hybrid molecular systems that combine a siloxane part with an
organic disc-like group are now being considered. In general, the attachment of
a flexible siloxane part to a mesogenic structure, via an alkyl spacer, maintains
the liquid-crystalline property but considerably reduces the transition temperatures
with respect to the aliphatic analogues. Moreover, the bulkiness of these groups dis-
favours crystallization and such hybrid materials show a strong tendency to freeze-
in the mesophase on cooling due to a strong supercooling effect. Consequently,
the mesophase temperature range becomes more accessible than their siloxane-free
analogues.

In this context, we have been interested in the design and the synthesis of
new hybrid discotic oligomeric materials and in the investigation of their thermal
behaviour and self-organization. In order to obtain stabilized columnar mesophases
where lateral slippage of molecules from one column to the adjacent one is strongly
prevented, a large oligomeric molecule (star-like heptamer, Fig. 11) has been pre-
pared and studied [65]. As deduced from XRD experiments, this compound showed
a columnar hexagonal phase between 38 and 111◦C. The hexagonal lattice parame-
ter a in the liquid-crystalline state is 22.2 Å and the presence of a signal at ca. 3.6 Å
proves that there is a long-range intramolecular stacking order along the columns.
This heptamer shows no signal at 6.4 Å (signature of interactions between siloxane
parts) in the XRD patterns, suggesting that there is in fact no contact between silox-
ane chains of different molecules. In addition, a signal at twice the intercolumnar
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Fig. 11 Chemical structure of the discotic heptamer, 4

distance shows that there is some superstructure besides the hexagonal columnar
arrangement.

When considering the possible packing modes (models I, II, and III in Fig. 12a),
in which none, one or two pairs of triphenylene units are interdigitated between
each pair of heptamers, the only packing consistent with X-ray experiments is II
(each heptamer shares one peripheral triphenylene with six adjacent neighbours),
where the distance between planes containing the cores is twice that of the regular
hexagonal lattice, in agreement with the superstructure. Within this packing mode,
the siloxane fragments are segregated into precise locations, leading to columns with
a different environment consecutive to the specific repartition of siloxane. It should
be noted that such a packing prevents the contact between siloxane chains, as shown
in Fig. 12b. In model I (each heptamer shares two peripheral triphenylene with
three adjacent neighbours) the interplanar distance is 1.5 times the intercolumnar
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Fig. 12 Possible packing modes of the heptamer and packing model of the heptamer in the Colh

phase. Grey circles correspond to the central triphenylene bearing six peripheral siloxane frag-
ments, and the white circles correspond to the peripheral triphenylene moieties

distance, while in model III (the “ideal packing”) the hexagonal pattern is scaled up
by a factor of

√
7.

The driving force for such a high degree of order (superstructure) is very often
considered as resulting from microsegregation due to strong attractive interactions,
usually between aromatic parts. In the case of the present heptamer, the steric inter-
actions between spacers give rise to the described superstructure, instead of the
“ideal stacking” one. Such a view of the molecular packing was confirmed by molec-
ular dynamics simulation (Fig. 13). In agreement with the X-ray experimental data,
the siloxane fragments are totally “miscible” with the aliphatic fragments, leading
to indiscernible triphenylene columns.

This molecular model of a single heptamer-based interlocked columns or “fibres”
made from seven columns was built according to Fig. 14. The model resulted in a
quadratic cell of dimension 110×110 Å (much larger than the expected diameter
of the fibre so that interactions between adjacent fibres can be avoided in the MD
simulations) and 25.2 Å in thickness (7×3.6 Å), corresponding to the height of
seven triphenylene cores stacked on top of each other. The model is first minimized
in energy in order to relax some local intermolecular interactions, and a first MD
simulation is performed as a 50 ps isotherm at 80◦C. The data for the distances
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(a)

(b)

Fig. 13 (a) Idealized CPK model of the heptamer, (b) snapshot of the heptamer 4 in the Colh phase
obtained by MD simulation
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Fig. 14 Scheme of the four successive strata used to build the fibre-like molecular model. Each
stratum contains a full molecule of the heptamer and/or some fraction of it (sectioned at the middle
of the siloxane group) in order to simulate the participation of a neighbouring molecule in the
stacking of a given rod while sharing one of its side triphenylene moieties. Each triphenylene stack
in the resulting cell contains six side groups (drawn in clear) and one central part (drawn in dark).
Evolution of the intercolumnar distances as a function of time (as given in the molecular scheme)
and average distances during the 200 ps simulation

calculations given in the graph of Fig. 14 were then collected from a further 200 ps
isotherm simulation. It can be clearly seen that the average intercolumnar distances
converge towards the measured lattice parameter (a = 22.2 Å).

5 Single Molecule Magnet

Single molecule magnets (SMMs) are materials able to retain a magnetization at
the molecular level below a certain temperature known as blocking temperature
[66]. These compounds currently elicit a sustained research activity: being quantum
objects they are envisioned as the future qubits of a quantum computer while their
magnetic properties make them the ultimate storage bits of a molecular magnetic
memory. Schematically, these hybrid molecules are made from metal ions bond
together by various organic ligands and numerous types of compounds have been
reported to show SMM behaviour: 4f -coordination compounds [67, 68], polymetal-
lic cages [69], and oxometallaclusters [70–76]. In spite of its poor stability against
water and temperature, the so-called Mn12 is probably the most studied SMM for at
least two reasons: its synthesis is cheap and easy and it long held the record of the
highest blocking temperature [72].
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On the other hand, the use of functional molecules in macroscopic devices
(bottom-up technology) requires that some degree of low-dimensionality self-
organization (1D or 2D) is imparted to the molecules. It is well known that self-
organization can only take place in a system that keeps some fluidity during the
process so that positioning errors can be corrected automatically. Liquid crystals are
precisely molecular assemblies where order coexists with fluidity [5–7].

Using molecular engineering, we were able to endow the Mn12 molecule with
liquid-crystalline properties while preserving the peculiar magnetic properties of the
original core, a side effect of this added functionality being a much improved ther-
mal stability [77]. The formation of positionally ordered mesophases is a first step on
the route to organizing SMMs in view of their eventually being part of a functional
nanodevice. In order to counterbalance the a priori unfavourable molecular shape
and bulkiness of the Mn12 cluster core and the important geometrical constraints,
we applied the classical strategy used to obtain thermotropic mesophases, consisting
in the covalent grafting of a mesomorphic promoter onto the inorganic cluster via
a flexible aliphatic spacer [78–82], to improve interfaces and areas compatibilities
between both moieties, and to enhance microsegregation. Thus, a mesomorphic,
dodecanuclear manganese complex [Mn12O12(O2CR)16(H2O)4] was obtained by the
replacement of the 16 LC-inert acetate groups (R=Me) holding the cluster together
by anisotropic gallate-derived moieties (5, Fig. 15) [77]. As a result, a 1D (smectic)
organized lamellar mesophase was indeed induced.

The corresponding functionalized cluster exhibited a homogeneous and fluid
birefringent optical texture from 40◦C upwards. X-ray diffraction scans show two
equidistant sharp reflections in the 1:2 ratio (42.3 and 21.0 Å, 00l reflections with l =
1, 2), indicative of a lamellar order. A broad and diffuse scattering, corresponding
to the short-range order of the molten chains, was detected at 4.5 Å (hch). Another
diffraction signal, at ca. 28.5±0.5 Å (d), with a different line shape and not com-
mensurate with the peaks coming from the lamellar structure, having therefore a
different origin, was also present. This peak was assigned to some intralayer order
associated to a specific arrangement of the diffracting centres, i.e. the magnetic

Fig. 15 Chemical structure of the gallate derivative substituent and of the Mn12 cluster forming 5
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Fig. 16 Molecular dynamics simulation in the substituted Mn12 cluster

cores. The features of the peak (intensity as compared to d002 and FWHM) imply
that this order is short-ranged and that the position of the diffracting centres is not
correlated from layer to layer. Such an intralayer organization would be sterically
induced by the bulky cyanobiphenyl groups. The intensity of the 001 reflection is
weak compared to that of 002, implying a modulation of the electronic density
within the lamellar periodicity. This suggests an organization in which the periph-
eral mesogenic groups are equally distributed on either side of the metallic cluster
in a compact manner (Fig. 16, cylindrical molecular conformation), resembling the
microsegregated smectic structures formed by mesogenic end-capped dendrimers
[8–14].

This supramolecular organization has been validated by molecular dynamics
simulations. A molecular model of a smectic bilayer was built, based on a cell
of 200 Å height (larger than the measured value so as not to artificially constrain
the thickness) and an area S ∼ 810 Å2, containing two superimposed molecules.
As none of the available force fields for the molecular dynamics studies were able
to simulate correctly the ring shape of the Mn12 cluster, each manganese atom of
a given cluster was restricted to its relative position to the others, according to
the X-ray diffraction structure of a reference compound. All non-Mn atoms of the
cluster are allowed to move freely, as well as the two molecules in the cell. An
average interlayer periodicity of 41.9 Å was obtained, in excellent agreement with
the measured value (d = 42.3 Å). Still using molecular modelling, we attempted to
precise the nature of the aforementioned in-plane order. Positional order in molecu-
lar 2D assemblies is most often hexagonal or square-like. Considering a hexagonal
packing of the Mn12 cores, the average distance between neighbouring magnetic
centres would then be 30.5 Å (S =

√
3/2 × a2

Hex), and the intralayer order 26.5 Å,
smaller than the measured d value. However, if a square-like pattern is considered,



Molecular Dynamics Simulations of Liquid Crystalline Dendritic Architectures 119

Fig. 17 Views of the lamellar
packing of the cluster
[Mn12L16]. Side view of the
lamellar packing of the
cyanobiphenyl groups and
clusters in the smectic layer
(top). Top view of the
in-layer lateral arrangement
of the clusters forming a
square-like lattice (bottom)

an average core-to-core distance of 28.4 Å (
√

S) is found, in better accordance with
the experimental data (Fig. 17). The intrinsic fourfold molecular cluster symmetry
could favour the square-like packing. In the fluid phase, both patterns are likely to
coexist, with the square lattice prevailing over the hexagonal one.

Thus, this smectic arrangement can be described as follows: the two incompatible
segments (mesogens and aliphatic spacers) form alternating layers, with tilt and
interdigitation of the mesogens between successive periods, and the Mn12 cores
are located in the aliphatic sublayers and arranged into a square-like planar array.
This supramolecular organization resembles that of the so-called filled mesh phases
observed with some facial amphiphiles where ionic clusters (formed by the laterally
attached alkali metal carboxylates) are organized in a hexagonal array within the
smectic phase [83]: the carboxylates are organized in the layers of the calamitics
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with or without correlation between the layers (filled mesh phases with random, 3D
rhombohedral and channelled-layer sub-organizations). Here, the Mn12 clusters are
squarely packed in the alkyl sublayers, with no long-range correlation between the
layers, and can also accordingly be described as a filled random mesh smectic phase.
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59. R. J. Bushby and O. R. Lozman, Curr. Opin. Sol. State Mater. Sci. 6, 569 (2002). 112
60. S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hügele, G. Scalia, R. Judele, E. Kapatsina,
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Surface Diffusion on Inhomogeneous Surfaces

H. Bulou, C. Goyhenex, and C. Massobrio

Abstract We address the issue of topology and diffusion on inhomogeneous sur-
faces by employing realistic interatomic potentials and a set of atomic-scale sim-
ulations tools, such us structural optimization and molecular dynamics. We focus
on heterogeneous combinations of transition metals substrate/adsorbate systems,
motivated by experimental evidence pointing to non-trivial diffusion processes on
short and extended spatial scales. The applications described in this chapter have in
common the existence of strong non-homogeneous structural effects at the substrate
level, resulting in surface reconstruction and preferential sites for adsorption and dif-
fusion. Specifically, we analyze the migration processes on the Pt(111) and Au(111)
substrate by referring mostly to the behavior of Co atoms, for which the account of
both hopping and site exchanges was found to be crucial. The theoretical framework
underlying our results is fully elucidated and validated through a detailed description
of the interatomic potential construction, the molecular dynamics method, and the
strategy for an effective search of the diffusion paths. This scheme allows to capture
the diffusion mechanisms on both the short and the extended length scales.

1 Introduction

This chapter aims at reviewing the current theoretical understanding of single and
collective diffusion on inhomogeneous surfaces. Our motivation is twofold. Real
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surfaces used in experiments are very different from ideal, defect-free surfaces due
to the presence of defects such as dislocations, holes, or steps, acting as preferential
nucleation centers. Moreover, inhomogeneous surfaces (from the standpoint of
structure and/or chemistry) are increasingly used as substrates on which the matter
can be organized at the nanoscale by atomic deposition.

Developing a reliable model able to account equally well for structure and
dynamics on inhomogeneous surfaces requires an approach founded on an afford-
able and accurate description of the interatomic interactions. To this purpose, we
adopt the n-body interatomic potentials detailed in Sect. 2 by considering the
classes of materials and the physical properties that such potentials can model
realistically.

Section 3 is devoted to our simulation methodology. We show that the concerted
use of classical molecular dynamics (to follow in real time the migration steps) and
energy minimization procedures (to obtain potential energies along diffusion path-
ways) leads to a comprehensive description of the atomic-scale processes involving
supported atoms and clusters. We shall also focus on the predictive power of such
methods in the framework of diffusion on inhomogeneous surfaces.

In Sect. 4, we show how inhomogeneous surfaces can be described in connection
with the pristine homogeneous regular crystallographic planes. We begin with the
observation that atomic rearrangements at pure surfaces, induced by a periodicity
breaking, lead to reconstructed surfaces with particular regular patterns. Reconstruc-
tions may be also obtained by depositing a material A on another type of material
B, A and B featuring a strong lattice misfit driving “heteroepitaxial-induced” recon-
structions. Vicinal surfaces will be also considered as particular inhomogeneous
surfaces since they present a regular network of steps. The dynamical behavior of
adatoms in their vicinity is expected to be different from the behavior at extended
terraces.

Section 5 provides examples of issues characteristic of diffusion on inhomo-
geneous surfaces. Specific processes occurring at the inhomogeneous surface are
described, such as lattice mismatch effect, step and reconstruction diffusion
anisotropy, and solitonic diffusion.

2 Interatomic Potential

A reliable energy model allowing to determine atomic configurations and to char-
acterize microscopic diffusion processes has to be defined from an accurate scheme
accounting for the electronic structure. Due to the huge computational effort, the
achievement of atomic configurations from ab initio electronic calculations is a pro-
hibitive task for inhomogeneous solids and surface systems containing thousands
of atoms. Equally challenging is to follow the evolution of atomic processes on
time scales of a few nanoseconds. A viable alternative is to build a semi-empirical
description of the electronic structure based on many-body potentials which can
be used in numerical simulations like molecular dynamics or Monte Carlo. To
such families belong potentials such as the Embedded Atom method (EAM) [1],
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the effective medium theory (EMT) [2], the second moment approximation tight-
binding [3], and other recipes most adapted to covalent bonding [4] or oxide materi-
als [5–7]. The situation becomes more intricate when two different types of bonding
are involved (metal/semiconductor, metal/oxide). In this particular case, a strategy
consists in deriving hybrid potentials from ab initio calculations performed on vari-
ous fixed configurations [8].

In this work we shall consider surface systems based on transition metals. We
stress that the methodology and the considerations developed herein can be applied
to any material provided a realistic many-body description is available. The fol-
lowing section deals with our theoretical framework and highlights some essential
methodological steps.

2.1 Many-Body Potential in the Second Moment Approximation
(SMA) for Transition Metals

The expression of the tight-binding Hamiltonian for a pure bulk metal can be written
in the basis of atomic orbitals λ at sites i , |i, λ〉 [9]:

H =
∑

i,λ

|i, λ〉ελ
at〈i, λ| +

∑

i, j �=i,λ,μ �=λ

| j, μ〉βλ,μ

i j 〈i, λ|, (1)

which involves two types of parameters, the effective atomic levels ελ
at and the

hopping integrals β
λ,μ

i j . From this Hamiltonian, one defines the local density of
states (LDOS) at a site i by projecting on the atomic orbitals at this site the Green
function:

ni (E) = − I m

π

∑

λ

〈i, λ|(E Î − Ĥ )−1|i, λ〉. (2)

From the LDOS the total energy Etot =∑i Ei is calculated with site energies Ei

given by [10]

Etot =
∑

λ

∫ E f

(E − ελ
at)n

λ
i (E)dE + 1

2

∑

j �=i

∫ ∫
dr1dr2

Qi (r1)Q j (r2)

|r1 − r2| , (3)

where the first term is a negative, i.e., attractive, contribution due to the band for-
mation from the atomic level and the second one a positive, i.e., repulsive, interac-
tion between spheres with charge Qi . The latter contribution is too weak to treat
correctly the repulsive interaction between the ions and it has to be replaced by a
pairwise empirical contribution. To make calculations tractable, the first term can
be reduced to a simple analytical form by replacing the actual LDOS by an approx-
imate one having the same second moment. Adding this expression to the repulsive
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contribution leads to a many-body contribution which cannot be written as a sum of
pair interactions, but instead as the square root of such a sum [3]:

Ei =
∑

j �=i

A exp

(
−p

(
ri j

r i j
0

− 1

))
−
√√√√∑

j �=i

ξ2 exp

(
−2q

(
ri j

r i j
0

− 1

))
. (4)

This expression contains four parameters A, ξ , p, and q. The exponent q char-
acterizes the distance dependence of the hopping integral between atoms at sites
i and j . ξ is an effective hopping integral and p is related to the bulk modulus
of the metal. The fact that the parameters are keeping a straightforward physical
significance makes these potentials very reliable for studying structural effects in an
interpretable way.

When bimetallic systems are considered, we have to rewrite a new sum including
mixed interactions and containing three sets of four parameters:

Ei = −
⎧
⎨

⎩
∑

j,ri j <rc

ξ2I J exp

[
−2qI J

(
ri j

r I J
0

− 1

)]⎫⎬

⎭

1/2

+
∑

j,ri j <rc

AI J exp

[
−pI J

(
ri j

r I J
0

− 1

)]
, (5)

where I and J indicate each of the two species. r I I
0 is the first neighbor dis-

tance in the metal I and r I J
0 = (r I I

0 + r J J
0 )/2. The interaction is set to zero

beyond a cutoff radius rc. In order to use the same cutoff radius for both metals,
rc has been fixed at the second-neighbor distance for the atom with the largest
atomic radius. Beyond this distance, the potential approaches zero via a fifth-
order polynomial so as to avoid discontinuities both in the energies and in the
forces.

The two heteroepitaxial systems under investigation, Co/Pt(111) and Co/Au(111),
can be taken as representative of growth under tensile stress. Besides the effects due
to the size mismatch, different behaviors of bimetallic systems in epitaxy can be
encountered depending on the surface energy difference between the two metals
(wetting criterion) and/or the ordering or phase separation tendency.

The (Co,Pt) system is characterized by a strong size mismatch (–11% between
the Co and Pt lattice parameters). For each one of the metal species, the set of param-
eters (ξ, A, p, q) is determined by fitting the potential to the universal equation of
state expressing the variation of the cohesive energy with the interatomic distances
[11]. This procedure requires the knowledge of the cohesive energy, the lattice
parameter, and the bulk modulus [12]; other structural properties like elastic con-
stants can also be used or checked. Fitting the universal equation leads to the values
of parameters reported in Table 1. An undesirable drawback of this recipe is the
severe underestimation of the surface energies’ values, as shown by their compari-
son with the experimental values [13]:
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Table 1 Parameters of SMA potentials for the couple (A,B)=(Co,Pt) and values of the main fitted
quantities: cohesion energy [12], equilibrium parameter [12], surface energies [13], and solution
energies of impurities [15]

Esol Esol

Aαβ ξαβ Ecoh r0 γα − γβ α in β β in α

α β (eV) pαβ (eV) qαβ (eV/atom) (nm) (eV/atom) (eV/atom) (eV/atom)

Co Co 0.189 8.80 1.907 2.96 –4.45 0.251
Pt Pt 0.242 11.14 2.506 3.68 –5.86 0.277
Co Pt 0.245 9.97 2.386 3.32 0.264 –0.16 –0.47 –0.65

• γ cal
Pt = 0.46 eV/at, γ cal

Co = 0.35 eV/at
• γ

exp
Pt = 1.03 eV/at, γ

exp
Co = 0.87 eV/at

This difficulty can be circumvented by the consideration that when working
on issues typical of bimetallic surfaces (segregation, deposition) the role of the
key quantity can be played by the difference between surface energies [14]. In
the present case, this difference is well reproduced: Δγ cal = 0.11 eV/at and
Δγ exp = 0.15 eV/at.

The main requirement for the cross-interaction parameters is to account for the
tendency to bulk ordering, i.e., favoring heteroatomic pairs. This is achieved by
fitting to the experimental (negative) heats of dissolution of one impurity of Pt into
bulk Co (resp. Co into bulk Pt). Such quantity can be obtained from the slopes of
the mixing energies [15] in the dilute limits. Due to the large size mismatch between
Co and Pt, the whole system (matrix+impurity) has to be relaxed during the fitting
procedure. Having only two equations for four parameters, only two of them (A and
ξ ) are left free while p and q are taken as the arithmetic average between the pure
metal values (see Table 1).

Turning to (Co,Au) the size mismatch is of the same order as for (Co,Pt)
(–14% between Co and Au parameters). For each pure metal species, the parameters
(ξ, A, p, q) are determined by fitting to the cohesive energy, the lattice parameter,
the bulk modulus, and some elastic constants. In order to preserve the surface energy
difference ΔγCo,Au = γCo − γAu, an additional constraint has to be introduced in
the fitting procedure. The main requirement for the mixed-interaction parameters
is to reproduce the existence of a miscibility gap in the phase diagram of the bulk
CoAu system [15]. This is achieved by fitting the positive heats of solution for single
substitutional impurities in order to get a realistic representation of this miscibility
gap. An iterative scheme combining fitting and relaxation is then used. The final set
of parameters is reported in Table 2.

It is worth noticing that the second moment approximation is best adapted
to close-packed materials where the cohesion is mainly driven by d-band elec-
trons. For other metals where the structure is less compact like body-cubic cen-
tered (bcc) crystals the bonding has a more directional character. In this case the
use of modified embedded atom method (MEAM) should be a better alternative
[16].
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Table 2 Parameters of SMA potentials for the couple (A,B)=(Co,Au) and values of the main fitted
quantities: cohesion energy [12], equilibrium parameter [12], surface energies [13], and solution
energies of impurities [15]

γα − γβ Esol Esol

Aαβ ξαβ Ecoh r0 (111) surface α in β β in α

α β (eV) pαβ (eV) qαβ (eV/atom) (nm) (eV/atom) (eV/atom) (eV/atom)

Co Co 0.106 10.87 1.597 2.36 –4.45 0.251
Au Au 0.189 10.40 1.744 3.87 –3.82 0.288
Co Au 0.141 10.63 1.614 3.11 0.270 +0.21 +0.50 +0.75

2.2 Useful Energy Criteria

Molecular dynamics simulations of diffusion on surfaces rely on the evolution
of the total energy for different configurations taken by the system during the
migration process. In order to compare the relative stabilities of different struc-
tures, it is worth establishing some additional definitions and criteria related to
the energetics. We refer here to the surface energy, the adsorption energy, and
the incorporation energy. The surface energy is defined as an energy excess due
to the presence of a surface. If one considers a layer of N atoms limited by
two surface planes, each containing ns atoms and having an area A, the surface
energy can be obtained by subtracting the energy Ebulk

N of N atoms taken in a
bulk to the energy E L

N of the layer. The latter being limited by two surfaces, the
obtained value has to be divided by two. The surface energy γ is then calculated as
follows:

γ = 1

2A (E L
N − Ebulk

N ). (6)

The units are mJ/m2, although the surface energy is often expressed in eV/atom.
In this case the area A is replaced by the number ns of atoms in the surface plane.

When depositing ns A atoms onto a B substrate with Ns atoms per plane, corre-
sponding to a coverage θ = ns/Ns M L(= monolayer), one defines the adsorption
energy per A atom as follows:

Eads(θ ) = Etot(A/B) − Etot(B) − nsμ(A)

ns
, (7)

where Etot(A/B) is the total energy (B substrate and ns adsorbed A atoms) and
Etot(B) is the energy of the bare substrate, which writes for a slab of k layers:

Etot(B) = k Ns Ecoh(B) + Ns Esurf(B). (8)

μ(A) is the chemical potential of the vapor phase taken as the origin of energies.
The unit of Eads in such calculation is eV/atom.
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In the same way one calculates the incorporation energy Einc (eV/atom) of ninc

A atoms in a surface of a B material by replacing ninc atoms of B by ninc atoms of
A so that the number of total atoms is the same both in the initial and in the final
slab:

E (AinB)
inc = Etot(A in B) + ninc Ecoh(B) − Einit(B). (9)

3 Methods

3.1 Classical Molecular Dynamics

The molecular dynamics method was first introduced by Alder and Wainwright in
the late 1950s to study the interactions of hard spheres [17, 18]. It consists in the
integration of the equations of motion for each atom in the crystal. We used the
velocity Verlet integration algorithm [19, 20]. It allows to compute the particles
position qi,α(t + δt) and momentum pi,α(t + δt) at a time t + δt .

The algorithm is derived by writing the following Taylor expansions for the posi-
tion and its temporal derivative:

qi,α(t + δt) = qi,α(t) + dqi,α(t)

dt
δt + d2qi,α(t)

dt2

δt2

2
, (10)

dqi,α(t + δt)

dt
= dqi,α(t)

dt
+ d2qi,α(t)

dt2
δt. (11)

By combining them, the coordinate at t + δt reads

qi,α(t + δt) = qi,α(t) +
(

dqi,α(t + δt)

dt
+ dqi,α(t)

dt

)
δt

2
. (12)

The temporal derivative is computed by considering the Hamiltonian of the
system

H =
∑

i,α

pi,α2

2mi
+
∑

i

∑

j �=i

Pi j
(
ri j
)−
∑

i

√∑

j �=i

Qi j
(
ri j
)
, (13)

with
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Pi j = Ai j exp

(
pi j

(
ri j

r i j
0

− 1

))
, (14)

Qi j = ξ2i j exp

(
2qi j

(
ri j

r i j
0

− 1

))
, (15)

ri j =
√∑

α
(
q j,α − qi,α

)
2, (16)

and the associated set of dynamical equations

dqi,α

dt
= ∂ H

∂pi,α
, (17)

dpi,α

dt
= − ∂ H

∂qi,α
. (18)

Then, by using Eq. (17), Eq. (12) can be written as follows:

qi,α(t + δt) = qi,α(t) +
(

∂ H

∂pi,α
(t + δt) + ∂ H

∂pi,α
(t)

)
δt

2mi
, (19)

= qi,α(t) + (pi,α(t + δt) + pi,α(t)
) δt

2mi
. (20)

By using a Taylor expansion of the momentum,

pi,α(t + δt) = pi,α(t) + dpi,α(t)

dt
δt = pi,α(t) − ∂ H (t)

dqi,α
δt, (21)

Equation (12) is written as follows:

qi,α(t + δt) = qi,α(t) +
(

pi,α(t) − δt

2

∂ H

∂qi,α
(t)

)
δt

mi
. (22)

A similar scheme is used to compute the momentum.
First, a Taylor expansion of the momentum and its temporal derivative is com-

puted:

pi,α(t + δt) = pi,α(t) + dpi,α(t)

dt
δt + d2 pi,α(t)

dt2

δt2

2
, (23)

dpi,α(t + δt)

dt
= dpi,α(t)

dt
+ d2 pi,α(t)

dt2
δt. (24)

By combining them, we obtain
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pi,α(t + δt) = pi,α(t) +
(

dpi,α(t + δt)

dt
+ dpi,α(t)

dt

)
δt

2
, (25)

and by using Eq. (18)

pi,α(t + δt) = pi,α(t) −
(

∂ H (t + δt)

∂qi,α
+ ∂ H (t)

∂qi,α

)
δt

2
. (26)

It is worth noting that the spatial derivative of the Hamiltonian at t + δt does not
depend on the momentum of the particles at t + δt

∂ H

∂qk,α

(t + δt) =
∑

i

∑

j �=i

⎛

⎜⎜⎝P ′
i j

(
ri j
)− 1

2

Q′
i j

(
ri j
)

√∑
j �=i

Qi j
(
ri j
)

⎞

⎟⎟⎠
∂ri j

∂qk,α

, (27)

with

P ′
i j = − pi j

r i j
0

Pi j
(
ri j
)
, (28)

Q′
i j = −2qi j

r i j
0

Qi j
(
ri j
)
. (29)

Then, Eq. (26) fully determines the momentum of the particles at t + δt from the
position and the Hamiltonian at t .

ri j reads

ri j =
∑

β

(
q j,β − qi,β

)
2, (30)

and its spatial derivative reads

∂ri j

∂qk,α

= q j,α − qi,α

ri j

(
δ jk − δik

)
, (31)

where the symbol δ jk stands for the Kronecker delta.
Inserting Eq. (31) in Eq. (27) leads to

∂ H

∂qk,α

=
∑

i �=k

⎛

⎜⎜⎝2P ′
ik (rik) − 1

2
Q′

ik (rik)

⎛

⎜⎜⎝
1

√∑
j �=i

Qi j
(
ri j
) + 1
√∑

j �=k
Qk j
(
rk j
)

⎞

⎟⎟⎠

⎞

⎟⎟⎠

(
qk,α − qi,α

)

rik
. (32)
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Fig. 1 Classical molecular dynamics algorithm

The molecular dynamics procedure is summarized in Fig. 1.

3.2 Quenched Molecular Dynamics

The quenched molecular dynamics procedure consists in a minimization of the total
energy of the system, based on the idea that a minimum of the energy can be found
by partially removing, at each time step, the kinetic contribution to the total energy
[21]. The procedure amounts to extracting kinetic energy from the system by set-
ting to zero the momentum pi,α of an atom i anytime the scalar product of this
momentum with the force is negative.
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3.3 Nudged Elastic Band

The nudged elastic band (NEB) method is used to find reaction pathways or
minimization energy paths (MEP) provided both the initial and final states are
known [22–24]. The NEB algorithm works by linearly interpolating a set of images
between the known initial and final states (as a “guess” of the MEP), and then it min-
imizes the energy of this string of images. Each “image” corresponds to a specific
atomic configuration intermediate between the initial and the final state, playing
the role of a snapshot along the reaction path. Thus, once the energy of this string
of images has been minimized, the true MEP is found. The energy optimization
of the string of images is performed by using the quenched molecular dynamics
procedure and involves both the minimization of the force acting on the images and
the minimization of the force acting on the atoms for each image.

4 The Inhomogeneous Surfaces

Inhomogeneous surfaces encompass reconstructed surfaces, vicinal ones, or surface
alloys. These surfaces are characterized by a structural and/or a chemical inhomo-
geneity. Inhomogeneous surfaces are the result of mechanisms involving short-scale
and long-scale rearrangements, as briefly described below.

4.1 Surface Mismatch Reconstruction

The first case we would like to consider is a stressed surface plane. In some cases,
strain relief occurs through dislocation formation [25]. Then, due to the mutual long-
range repulsion, the dislocations arrange into highly ordered periodic patterns [26].
A typical case of stressed surface plane is the (111) surface of transition metals. It
is now well established that the ability of a transition metal surface to reconstruct
depends on the surface stress [27, 28]. A reliable criterion to evaluate the surface
stress in a metallic surface is the surface mismatch ms [29],

ms = r surface
eq − rbulk

eq

rbulk
eq

, (33)

where rbulk
eq and r surface

eq are, respectively, the interatomic equilibrium distance in the
bulk and at the surface. For gold, due to the strong relativistic effects, character-
istic of the 5d metals and the complete d-band filling, the equilibrium distances
between the atoms at the surface are much smaller than in the bulk, leading to a
surface mismatch ms close to –3%. The relief of the existing strong tensile sur-
face stress [29] leads to a reconstruction of the surface, the herringbone recon-
struction of gold [30, 31]. Figure 2a, b shows an STM image of the topography
of a clean reconstructed Au(111) surface and a simulation of the surface by using
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Fig. 2 (a) STM image of the herringbone reconstruction of Au(111). Image 70×70 nm [32]. (b)
Geometry of the herringbone reconstruction of gold determined by using molecular dynamics. See
Sect. 3 for more details about the method. Only the surface plane is displayed. The black arrows
mark the discommensuration lines. The z-scale (< 111 > direction perpendicular to the surface)
is distended in order to emphasize the corrugation of the surface

molecular dynamics, respectively. Details about the method used to determine the
reconstructed surface are given in Sect. 3. The present herringbone reconstruction
consists of pair-wise arranged parallel stripes, the discommensuration lines (DL),
running in a zigzag pattern. The mean distance between the lines of a pair is about 22
and 44 Å between the pairs. This arrangement is characterized by a strong structural
inhomogeneity at the atomic scale. In Fig. 3 we visualize the map of the in-plane
interatomic distances between the gold atoms belonging to the reconstructed sur-
face. The corresponding distribution is given in Fig. 4. Details about the method
used to determine the distribution of Fig. 4 are given in Sect. 3.

On the one hand, the surface mismatch forces the atoms of the surface to get
closer in order to reach the surface equilibrium distance (2.82 Å). On the other
hand, the underlying bulk lattice imposes the bulk equilibrium distance (2.88 Å)
at the surface. The stablest configuration is a surface split into two main parts,
respectively, of fcc and hcp stacking (Fig. 2b). In the fcc region, the surface atoms
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(Å

)

Fig. 3 Mean in-plane interatomic r̄ distances between the gold atoms belonging to the recon-
structed surface
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Fig. 4 Distribution of the in-plane interatomic distances between the gold atoms belonging to the
reconstructed surface

Fig. 5 STM image of self-organized Co clusters as obtained after deposition at 300 K. Zigzag DLs
have been highlighted with white lines. Images 100×100 nm [33]
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adopt the bulk lattice parameter whereas in the hcp region, they adopt the surface
equilibrium distance. The DL acts as a transition region between the fcc and the
hcp parts. Finally the DLs cross each other at specific points of the surface, the
kinks of the reconstruction. The mean interatomic distance between the atoms of
the surface in the DL is about 2.75 Å. The kinks form a network issued from
the entanglement of the DLs and play a special role during the heteroepitaxial
growth of many chemical species such as cobalt, iron, or nickel, since the nucle-
ation takes place at these points. The mean interatomic distance at the kinks of
the reconstruction is about 2.65 Å. Preferential nucleation is at the origin of the
well-organized growth of nanostructures on the herringbone reconstruction of gold.
A typical example is given in Fig. 5 where an STM picture of self-organized Co
clusters grown at 300 K is displayed [33]. The clusters are two atomic layers in
height, the amount of deposited Co corresponds to 0.26 atomic cobalt monolayer.
Figure 5 shows a regular array of Co islands nucleated at the kink positions of the
reconstruction.

Another interesting case of surface reconstruction is the (111) surface of platinum.
The surface stress at the Pt(111) surface is smaller than the gold one. The associated
surface mismatch ms is only –2.5%. Then, there is no spontaneous reconstruction
phase formation in normal conditions for Pt(111) as is the case for the Au(111)
surface. However, in some specific conditions, as for instance after a sputtering of
the surface [34] or in the presence of a supersaturated Pt gas-phase environment
[35], a Pt(111) surface reconstruction has been reported.

4.2 Reconstruction Through Heteroepitaxy

While stress relief at pure surfaces may be responsible for reconstruction phenom-
ena, it can be also responsible for the formation of network defects in an epitaxied
atomic layer. This is the case for instance of copper deposited on Ru(0001) [36] or
silver on Pt(111) [37, 38]. In heteroepitaxy the stress in the adsorbed layers stems
from the lattice mismatch with the substrate. In the case of Ag/Pt(111) [37, 38],
the first monolayer grows in a (1 × 1) structure, leading to an isotropic compres-
sion close to 9%. The spawned stress is then released in the second grown silver
layer by the formation of metastable unidirectional phases, which transform into a
trigonal network of crossing domain walls upon annealing. While Ag/Pt(111) has
been taken as a famous example for growth under compressive strain, Co/Pt(111)
is a system well representative of the relaxation mechanisms of the tensile strain in
metal-on-metal heteroepitaxy. Using quenched molecular dynamics, it was found
that the pseudomorphy is favorable in the first stages of the growth [39]. The
adsorption energy corresponding to the continuous pseudomorphic (1 × 1) layer is
4.64 eV/atom. In comparison, the fully relaxed Co layer (1.23 ML) is less favorable
with a value of 4.60 eV/atom. In this case, fitting the substrate by dilation has a
lower energy cost than introducing unfavorable on-top positions while recovering
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Fig. 6 Optimal relaxed structure for a Co layer onto Pt(111): 1D pseudoepitaxy. The upper plane
is the Co deposit and the underlying layer is the first Pt plane of the Pt substrate slab. The scale has
been magnified in the z-direction in order to better visualize the corrugation in the layer

bulk-like Co distances. The first layer structure can be optimized with respect to
the pseudomorphy by slightly overfilling the substrate plane, i.e., by simulating
layers with a coverage slightly higher than 1 ML. One way to build a more close-
packed structure than the Pt(111) plane is obtained from the analogy with the recon-
struction observed in the Au(111) surface which is attributed to the pure surface
tensile strain. One gets in this way a pseudoepitaxy having an uniaxial character
that features a 1D pseudomorphy along the [11-2] direction and a 1D pseudoepi-
taxy along the [1–10] direction. Different box sizes and/or fillings of the first Co
layer have been tested within the relaxation procedure. The optimal value of the
adsorption energy is Eads = −4.66 eV/atom for a coverage of 1.10 ML. Figure 6
shows the corresponding relaxed superstructure. Upon the relaxation, the adatoms
do not stay uniformly distributed on the surface and some corrugation appears in
the layer. This is due to the formation of linear defective regions having a higher
level in the z-direction δz = 0.017 nm and for Co atoms in bridge positions.
These line defects separate regions in coherent epitaxy but with alternate fcc and
hcp stacking with regard to the substrate. Two pairs of these lines are visualized
in Fig. 6. In this case, the fcc regions are wider than the hcp regions situated
between two close domain walls just as for the Au(111) reconstruction surface.
Some discommensurations of this nature have been observed in scanning tunneling
microscopy (STM) experiments of Lundgren et al. [40] for a Co layer grown onto
Pt(111).

It appears that under tensile stress during heteroepitaxy, pseudomorphy is the
most favorable situation in the first stages of the growth. This holds true despite the
large expansion involved. The lower energy cost for this dilation is due to the very
smooth variation of the interatomic potential above the equilibrium distance. The
lattice dilation has a limited spatial extent meaning that the strain at the completion
of the first layer is too large to get a perfect pseudomorphy. The strain induced by the
large misfit is then partially released through the introduction of some contractive
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reconstruction discommensurations, separating the regions of coherent epitaxy. This
mechanism allows an over-closepacking of the film similar to the 5d metal surface
reconstructions like it was demonstrated precedently for Au(111) surfaces. In many
systems presenting a large negative value of the misfit, the epitaxy is coherent in the
first stages: Co/Pd(111) [41]; Cu/Ru(0001) [36]; Ni/Pt(111) [42]. The occurrence of
relaxation by contractive discommensurations has been experimentally evidenced in
the case of Co/Pt(111) [40] and Cu/Ru(0001) [36]. This scheme is the most gener-
ally valid for tensile strain relaxation in close-packed metallic interfaces. However,
this behavior has a limit in terms of size mismatch. Indeed, it has been shown for
Co/Au(111) epitaxy that Co is relaxing in the first layer toward its natural bulk
parameter and this is due to a too strong size mismatch (–14% between Co and Au
parameters) [43–45].

4.3 The Vicinal Surfaces

The vicinal surfaces are obtained by cutting a crystal along a plane making a
small angle – typically lower than 10◦ – with a low index plane. Figure 7 shows
the example of the Pt(997) vicinal surface where a periodic succession of ter-
races and steps of monoatomic height can be observed. The origin of inhomo-
geneity of vicinal surfaces is double. First, the coordination of the atoms belong-
ing to the steps is lower than the one of the atoms inside the terraces, leading to
different nucleation behavior of the adatoms at the step’s edges and at the cen-
ter of the terraces. Hence, nanowires can be obtained by step edge decoration
[46–48].

Second, due to the steps, a side of the terraces is free, which allow the terraces
to release (RELEASE . . .?) the surface stress. Figure 8 displays the mean in-plane
interatomic distances between the platinum surface atoms in the neighborhood of
a step edge. Distances are shorter at the edge compared to the bulk value (2.78 Å).
Mainly three atomic rows are affected, and the distance ranges from 2.737 Å at the
edge to 2.762 Å at the center of the terrace.

Fig. 7 Pt(997) vicinal surface
in perspective view

[1̄1̄2]

[11̄0]
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Fig. 8 Mean in-plane intertomic distances between platinum atoms on the Pt(997) vicinal surface.
The black lines connect the platinum surface atoms of the upper terrace

5 Atomic Diffusion on Inhomogeneous Surfaces: Some Examples

5.1 Lattice Mismatch Effect in Atomic Migration During
Heteroepitaxial Metal Growth

Lattice mismatch plays a determinant role in surface atomic diffusion in epitaxy, as
shown by the example of atomic migration along steps during heteroepitaxial metal
growth. One effect is the increasing anisotropy of diffusion along close-packed steps
of adsorbed islands on (111) surfaces with increasing strain in the layer. This has
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been exemplified by results on homoepitaxy [49–55] and heteroepitaxy where the
adlayer is under compressive strain [56]. In most of these investigations the barrier
of diffusion along steps with (111) triangular microfacets (B steps) is greater than
the barrier of diffusion along steps with (1000) square microfacets (A steps). The
Co/Pt(111) system can be used as a model system to study diffusion along steps
in the case of tensile strain [57]. Simulations have been performed within classical
molecular dynamics (MD) applied to the diffusion along these two kinds of steps
in the case of Co/Pt(111). MD is first used as a relaxation method by applying
quenched molecular dynamics. In this way we can determine at 0 K both the equi-
librium positions of atoms and the activation energies related to the motion of an
adatom along a step. In a second step, constant energy molecular dynamics simula-
tions are performed in order to link the obtained results to the actual trajectories of
adatoms at temperatures of interest. The chosen system is a slab having a thickness
of 12 planes in the z-direction and delimited by two (111) surfaces. On the side of
the slab (x- and y-directions) periodic boundary conditions are applied. A smaller
Co terrace has been added on the topmost Pt(111) plane where the Co atoms are in
registry with the substrate following its fcc stacking. The Co terrace is limited by
an A step in the lower part and by a B step in the upper part. To study the parallel
motion we start with one adatom in the most stable fcc site on the side of each
step, where the coordination is fivefold (there are three Pt neighbors underneath
and two lateral Co ones). In order to determine the activation energies associated
with the motion parallel to the steps, calculations have been performed at 0 K by
quenched molecular dynamics. The Co adatom added on the side of each step is
moved parallel to the step and potential energies are calculated at regular distances
between two most stable sites. The adatom is left free to relax in all directions except
in the direction parallel to the step. All other atoms of the slab are free to relax in
the three space directions. Results are presented in Fig. 9 together with the main
simulated atomic configurations labeled by numbers 1, 2, and 3.

The zero energy reference is taken at the most stable fcc site. The potential energy
curves have similar appearance both presenting a secondary minimum, giving rise to
two symmetrical saddle points. Migration along an A step gives a maximal variation
of energy of ΔE(A) = 0.41 eV. Within the same definition, migration along a B
step gives a maximum at much lower energy with ΔE(B) = 0.18 eV. Looking
closer to the curves one has to pay attention to the secondary minimum. In both
cases the maxima correspond to the crossing of a bridge position between two Pt
substrate atoms. The secondary minimum corresponds to an effective fourfold posi-
tion (see images labeled Number 2 in Fig. 9) where the Co adatom is linked to
three underlying atoms plus one atom of the step border. It is clear for the B step
that in this position the Co–Co distance is strongly reduced and gives a (secondary)
minimum, since this leads to a distance of 0.226 nm closer to the Co–Co bulk one
(0.250 nm) while much smaller than the Pt–Pt one (0.277 nm). We have identified
here an inward displacement of the Co atom toward the step, Δy = −0.037 nm.
Such a displacement is strictly forbidden in homoepitaxy where the motion is
1D giving a saddle point in the middle position between the two stable fcc sites
[50, 54].
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Fig. 9 Migration along steps: potential energy curves obtained for the displacement of a Co adatom
starting from a fivefold coordinated site along A or B step and joining another equivalent site
along the considered step. The x-axis corresponds to the displacement parallel to the step and is
expressed in arbitrary units (a.u.). The images under the curves represent the key stages of this
displacement. They are labeled with numbers which are also reported on the curves in order to
locate the corresponding energy

In the case of the A step, the adatom moves outward from the step with regard
to the stable fcc sites. A secondary minimum is also observed where the adatom
recovers a coordination of strictly three (Number 2 in Fig. 9). This particular energy
profile results also from a lattice mismatch effect. Indeed, for homoepitaxy along
the A step, the displacement of the adatom is similar on a geometrical point of view
but the energy maximum is obtained close to the hcp position where the adatom
is the most distant from the step [50, 54]. As the energy for moving along A step
is quite large with regard to migration along B step, one has to check the abil-
ity of an alternative path of lower cost before concluding on an actual anisotropy
between migration along A and B steps. Another option for moving along the A
step is through an exchange process where the adatom pushes out one of the step
atoms. Simulating this motion leads to a saddle position represented in Fig. 9 cor-
responding to an activation energy of ΔE = 0.48 eV, therefore higher than simple
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migration. This high energy comes from the fact that the two moving atoms have
to turn around one underlying Pt atom of the substrate close to a much unfavor-
able on-top position. In order to link static activation energies to the actual rela-
tive mobility of the Co adatoms some complementary constant energy calculations
have been performed. The trajectories of the two Co adatoms placed at each border
are then followed in a same simulation of 2.4 ns at T = 370 K, this temperature
being chosen in order to approach experimental conditions. They are plotted in
Fig. 10.

As expected on the basis of static calculations, a much longer trajectory is
obtained along the B step while along the A step no jumps are recorded within
the same simulation time. Looking first at the Co atom moving along B step, the
displacement occurs by hopping, with the adatom spending more time in stable five-
fold sites where it undergoes small oscillations. Transitions toward the secondary,
less stable site along the step are also observed and identified in the potential energy
curves. In agreement with the potential energy profile, the atom spends less time
in this site. The two oscillatory modes are also visible along the A step but the
short span of the trajectory prevents from drawing clear-cut conclusions. Therefore,
both static calculations and molecular dynamics provide evidence for a much larger

Fig. 10 Trajectories of a Co adatom, respectively, along A and B steps obtained for a simulation
of 2.4 ns at 370 K. The Co atoms of the terrace are the smaller dark circles situated on top of the
Pt(111) lattice represented with empty circles. The lower part of the terrace is an A step and the
upper part is a B step. The trajectories of the Co atom are represented by solid lines
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propensity to migrate along B steps than along A steps in the case of heteroepitaxial
systems for which the adlayer has a smaller lattice constant relative to the substrate
(tensile strain).

In order to obtain a general view for diffusion along steps as a function of lattice
mismatch, we have compared calculated diffusion barriers obtained within differ-
ent formalisms for various homoepitaxial systems and two heteroepitaxial cases
(Co/Pt(111) and Ag/Pt(111)). These latter are representative of systems under ten-
sile and compressive strain, respectively. Values of energy barriers are summarized
in Table 3. Looking first at homoepitaxy, most of the systems present either no
anisotropy or a much smaller one than in heteroepitaxy. Except for gold, the general
tendency is to have slightly higher energy activation for diffusion along B steps.
The same tendency, while much marked in terms of anisotropy, is obtained for the
heteroepitaxial compressive system Ag /Pt(111). For this system, the energy barrier
for migration along the B step is 2.1 times larger than the one for migration along
the A step. The opposite behavior is obtained for Co/Pt(111), the energy barrier
for migration along A step being 2.3 times larger than the one for migration along
B step. This particular behavior is directly linked to the lattice mismatch between
Co and Pt allowing a lower energy diffusion path along the B steps. In this case,
the “smaller” Co atom undergoes an inward displacement toward the step during
its displacement between two stable sites. This motion becomes possible only in
the case of tensile strain where the adlayer has a smaller lattice constant than the
substrate.

Table 3 Comparison of activation energies for migration along A and B steps for various metallic
systems either calculated with semi-empirical methods or density functional theory (DFT) cal-
culations, second moment approximation (SMA), effective medium theory (EMT), or embedded
atom method (EAM). For DFT calculations we refer to either local density (LDA) or generalized
gradient corrections (GGA) calculations. Corresponding references appear in the last column of
the table

ΔE(eV) ΔE(eV)
System A step B step Method References

Cu/Cu(111)
HCP 0.25 0.31 EAM [49]
islands
FCC 0.34 0.30 EAM [49]
islands
Au/Au(111) 0.34 0.22 SMA [50]
Ag/Ag(111) 0.25 0.29 SMA [50]

0.21 0.28 EAM [51]
0.22 0.30 EMT [56]

Al/Al(111) 0.31 0.45 DFT-GGA [52]
Pt/Pt(111) 0.45 0.40 EMT [53]

0.71 0.77 DFT-GGA [54]
0.84 0.90 DFT-LDA [54]

Ag/Pt(111) 0.19 0.39 EMT [56]
Co/Pt(111) 0.41 0.18 SMA [57]
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5.2 Co Adatom Diffusion Across a Stepped Pt(111) Surface

Stepped surfaces can be taken as the simplest examples of inhomogeneous surfaces.
When preparing substrates as flat as possible for epitaxial growth a non-negligible
density of atomic steps can remain, perturbing further diffusion through interlayer
mass transport or simply acting as a trap for incoming atoms. This latter effect is
also used to build in a controlled way regular networks of nanowires using a vicinal
surface, i.e., a surface presenting a regular network of atomic steps [58]. To elucidate
this point let us consider again the case of Co/Pt(111). The simulation slabs feature
a thick Pt(111) substrate on top of which a six-row Pt terrace has been added. The
terrace is bounded on the lateral sides by two straight steps of different symmetry,
an A step (lower side of the terrace in Fig. 11) and a B step (upper side). Above
the terrace we put an adatom which may move around, reach the border of one of
the steps, and possibly descend. Once the adatom is on the border many different
processes may occur: diffusion along the step, reflection back to the inner terrace, or
descent to the lower terrace either by jump or by exchange. First considering step A,

Fig. 11 Top view of the slab used in the simulation. The open and full circles represent the atoms
of the lower and upper terraces, respectively. The terrace is bounded by an A step on its lower side
and a B step on its upper side. f and h indicate fcc and hcp sites on the terrace borders; c indicates
the nearest equilibrium site on the lower terrace (in the channel) and t the nearest equilibrium site
in the inner terrace (terminology taken from [59])
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the equilibrium sites just at the border of the upper terrace are hcp sites (as the site
h in Fig. 11); their fcc neighbors ( f site) are behind the atoms of the step. Once
the adatom has reached an h site, several possibilities are let open. The adatom may
jump directly down in the channel (to the site c just in front); it may exchange with
an atom of the step, the latter being pushed toward one of the c sites; it may jump
to an f site. If the adatom is on an f site, other processes may take place: it may
jump to an h site, it may exchange with an atom of the step, or it may come back to
the inner terrace jumping to the nearest t site. Along a B step similar processes can
take place, the only difference being that the sites just at the border of the step are
fcc ones.

The barriers for some of the above processes are reported in Table 4. Let us con-
sider first migration on the upper terrace. The hcp and fcc positions just near the top
(h and f ) border have nearly equal site energies and are more stable than the other
sites on the terrace. For both types of steps their site energies are lower by about
50.0 meV with regard to the other ternary sites on the terrace. For that reason, the
barrier for coming back toward the terrace, or the reflection barrier ΔEr , is increased
by the same value with respect to the barrier for migration along the border. The
barrier for migrating parallely to the steps border is the lowest one, suggesting that
once the adatom has reached a border (A or B) it preferentially migrates along it.
Then, as regards step descent, jump or exchange descent is proceeding from h sites
at A step and f sites at B steps (as suggested by the energetics of these locations).
For both types of steps, the jump-descent barriers ΔE j are lower by a few tenths of
electronvolts than exchange barriers. From these results step descent is expected to
occur preferentially by jump. The anisotropy diffusion between steps is noticeable
in the case of the exchange process.

An anisotropy in the case of the exchange process is similarly found in calcula-
tions (by embedded atom and effective-medium potentials) in Ag [60] and Pt [61],
the barrier for exchange turning out to be considerably lower at step B than at A
step. In the case of Ag, by means of SMA potentials, a strong anisotropy (0.35
and 0.21 eV) has been found for exchange from A and B steps, respectively [62],
in agreement with [60]. For Au the anisotropy is much less marked whatever the
considered process [59].

According to the static energy barriers, one may predict the qualitative following
behavior at high T. ΔEedge is much lower than the other barriers. Therefore, once the
adatom has reached the border of one step it should diffuse along that step before
being reflected back to the inner terrace. The probability for this process to occur

Table 4 Energy barriers for crossing Pt steps at a (111) surface for the following processes:
exchange, ΔEex; jump, ΔE j ; reflection from the border toward inner terrace, ΔEr ; migration
along the top border of the step, ΔEedge. All data are in eV

Step ΔEex ΔE j ΔEr ΔEedge

A 0.77 0.56 0.24 0.18
B 0.63 0.52 0.25 0.19
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is low but much larger than the probability of descending to the lower level either
by exchange or by jump. On the other hand, as the barriers for exchange are much
higher than barriers for jump descent, one may expect that only jumps are occurring
at A steps and few exchanges at B steps. In order to investigate whether those pre-
dictions are realistic, we have performed a series of constant-energy simulations at
T = 900 K. In each simulation, the adatom starts in the middle of the upper terrace,
then it diffuses, reaches the step, and finally descends. Each simulation is stopped
when the adatom has descended to the lower terrace, either by jump or by exchange.
Figure 12 represents a trajectory of a Co adatom diffusing onto the Pt terrace. It has
been obtained after a simulation at T = 900 K corresponding to a diffusing time
of 0.4 ns. Near the A step it nicely illustrates the Schwoebel effect [63] due to the
fact that the adatom reaching the border of the terrace has to overcome a potential
barrier effectively preventing the descent to the lower terrace. In this example, one
exchange process has finally occurred at the B step between the adatom and a Pt
atom of the step border.

Generally, as observed in Fig. 12, when the adatom reaches the border of an A
step, it spends most of its time along this border with very few steps of descent
and a multitude of jumps. On the contrary, when the adatom reaches the border
of a B step it is rapidly incorporated into the step by an exchange. From a series
of simulations at 900 K we have estimated the relative occurrence of each type
of jump. At B steps 92% of descent events are exchanges. At A steps there is
an equal frequency between jumps and exchanges. At B steps, it appears that the
above predictions do not correspond to the actual high-T results where exchanges

Fig. 12 Trajectory of a Co adatom initially placed on top of a Pt terrace. The Pt atoms of the
terrace are the smaller empty circles situated on top of the Pt(111) lattice represented with filled
black circles. The left part of the terrace is an A step and the right part is a B step. The trajectory
of the Co atom is represented by a gray solid line. The black solid line corresponds to the Pt atom
going out of the B step during the final exchange at this step
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are clearly more likely to occur than reflections and jumps. In summary, there is
an unexpectedly high frequency of exchanges with respect to that of reflections
and jumps in the case of B steps. The apparent contradiction between static and
dynamical results can be explained as follows. At high temperatures, the step atoms
perform large-amplitude oscillations around their equilibrium sites. The vibrations
are asymmetric in the direction perpendicular to the step, being easier for a step
atom to oscillate outward than inward. This effect is much stronger when an adatom
is on the border of the step. From a geometrical point of view, the outward motion
is much easier for an atom coming out of the B step than for an atom coming out
of an A step for which an on-top position has to be circumvented (see Fig. 11). The
latter considerations are in favor of a high anisotropy of diffusion in step descent
by exchange for heteroepitaxy of Co/Pt(111), this anisotropy being expected on the
basis of static calculations. However, vibrational effects at stepped surfaces may
play an important role and lead to diffusion phenomena that could not be predicted
by static calculations. These pieces of evidence suggest that diffusion studies should
be made through a combination of static and dynamic simulations. On a practical
point of view, the simulations performed at high temperatures can help to identify
the temperature regime of self-organization on a surface. For a vicinal substrate this
strategy will allow to determine the range of temperatures where the formation of
nanowires is possible without alloy formation by incorporation at steps.

5.3 Diffusion Anisotropy of Cobalt on the Herringbone
Reconstruction of Gold

In what follows, we focus on the mass transport and the diffusion mechanism of
cobalt adatoms on the herringbone reconstructed surface of Au(111). A typical dif-
fusion path for Co atoms on such inhomogeneous surfaces is displayed in Fig. 13
where a snapshot of a simulation performed at 600 K for a time interval of 96 ps is
presented. A strong diffusion anisotropy of the cobalt adatoms on both fcc and hcp
parts of the reconstruction stands out as the most peculiar phenomenon. One notices
a clear displacement of the cobalt adatoms toward the discommensuration lines,
along a direction perpendicular to it. Conversely, escape of cobalt adatoms from
the discommensuration lines to either the fcc or the hcp parts of the reconstruction
occurs much less frequently. This highlights the role of the discommensuration lines
as attractive traps for the cobalt adatoms.

A direct outcome of the attractive feature of the discommensuration lines is the
cobalt depletion of the fcc and hcp parts of the reconstruction to the advantage of
the discommensuration lines. The depletion effect is readily seen in Fig. 14, where
the time evolution of the occupation ratio of the different parts of the reconstruction
by the cobalt adatoms at 400 and at 600 K is presented. The diamond symbols give
the expected geometrical occupation ratios. They represent the proportion of cobalt
adatoms lying on the different parts of the reconstruction in the case of an uniform
distribution. Figure 14 shows that irrespective of the temperature, the occupation
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Fig. 13 Trajectories (gray dots) of Co adatoms on the herringbone reconstruction of Au(111) along
a time interval of 96 ps at T = 600 K. The unfilled circles give the position of the gold surface
atoms belonging to the discommensuration lines. The black arrows give the net displacement of
the cobalt adatoms along the time interval

ratio of the discommensuration line reaches a stationary value much larger than the
corresponding expected geometrical occupation ratio. This is an additional clue of
the attractive character of the discommensuration lines at the expense of the other
parts of the reconstruction.

It is worth noting the temperature dependence of the stationary occupation ratio,
i.e., the higher the temperature, the larger the variation compared with the expected
geometrical occupation ratio. Such a trend provides evidence for the thermodynam-
ical origins of the depletion effect.

The origin of the diffusion anisotropy can be understood from Fig. 15 which
displays a part of the surface with two discommensuration lines and a fcc part
of the reconstruction. An adatom is located at the center of the triangle and the
three possible directions to diffuse are indicated by the arrows. The main difference
between the three directions <112̄>, <12̄1>, and <2̄11> lies on the stress state:
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Fig. 14 Time evolution of the
occupation ratio of the
fcc+hcp parts of the
reconstruction (open
symbols) and of the DL (full
symbols) at 600 K (•) and
400 K (�). The diamond
symbols give the expected
geometrical occupation ratio
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while the stress along the direction <2̄11> perpendicular to the discommensuration
lines is released due to the over-closepacking (see Sect. 4), the other <112̄> and
<12̄1> directions are stretched. NEB calculations indicate an activation energy of
100 meV for moving along the directions perpendicular to the discommensuration
lines whereas it is 200 meV for the directions parallel to the discommensuration
lines [64]. This means that the movement along the <112̄> and <12̄1> directions
is more demanding than along the < 2̄11> direction. In the latter case, the pres-
ence of the adatom at the saddle point releases the tensile stress, thereby decreasing
the energy barrier. Figure 15 shows that adatoms deposited on the fcc part of the
reconstruction are constrained to move into a channel perpendicular to the discom-
mensuration lines.

5.4 The Solitonic Diffusion

For a long time, the atomic diffusion by hopping, described in the previous section,
has been considered the most common mechanism of mass transport on the surfaces.
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Fig. 15 Diffusion directions for an adatom located at the center of the fcc part of the reconstruction

However, on the basis of both experiment and theory, it has been discovered that a
second major mechanism can occur, the atomic site exchange [65–67]. In such a
mechanism, the adatom takes the place of a surface atom which in turn continues
the diffusion. The occurrence of the exchange mechanism depends mainly on the
chemical nature of the substrate and on its orientation. It has been proved that in the
case of the 5d fcc metal surfaces such as gold, iridium, or platinum, the origin of the
exchange mechanism has to be found in the tensile stress [67, 68]. This mechanism
has been reported as a major one not only in the case of some 5d metallic surfaces
[69, 70] but also in the case of some 3d ones [71, 72] and some 4d ones [73].

In Sect. 4, the strong structural inhomogeneity of the gold (111) surface has been
described. In this section, we show that the surface stress inhomogeneity related
to the structural inhomogeneity of the herringbone reconstruction of gold is at the
origin of a long-range exchange mechanism.

Our approach involves the preparation of a Au(111) surface with adsorbed Co
clusters [74]. Upon thermal activation, the Co clusters are allowed to burrow into the
substrate, as shown on the STM topography of Fig. 16 obtained for a cobalt coverage
θ = 3 AL, before (Fig. 16a) and after (Fig. 16b) annealing the sample at 450 K for
1 min. As shown in the line scan of Fig. 16c, some clusters being originally two
atomic layers in height appear as monolayers after annealing. These clusters have
buried into the substrate by one atomic Co layer. This burrowing process is known
as a “superexchange” mechanism and it has been observed in the case of Co into
Cu(100) and Ag(100) and in the case of Ni clusters into the (001), (110), and (111)
surface of gold as well [75–79]. During this process, the Co clusters remain intact
as could be confirmed by following in situ their magnetic properties [75] Table 5.

Along with Co clusters burrowing, gold islands appear at some distance from the
buried Co clusters. A detailed analysis shows that the amount of Au transferred to
the surface corresponds to the amount of atoms displaced by the sunken Co clusters.
The Au atoms ejected from the topmost atomic layer mainly form rims around
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Fig. 16 (a) STM image of a self-organized Co cluster as obtained after deposition at 300 K. Zigzag
DLs have been highlighted with white lines. (b) False color STM image of the Co cluster network
after annealing at 450 K. Dark gray patches represent the Co bilayer clusters. Light gray patches
are the sunken Co clusters. Large bright patches labeled (1), (2), and (3) are the gold rims. (c) The
line scan confirms the presence of fully emerged and sunken Co clusters (4.0 and 2.0 Å above the
surface, respectively) as well as monolayer high Au rims (2.36 Å). Images 100 × 100 nm (from
[33])
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Table 5 Conservation of cobalt and gold atoms upon thermally activated cobalt burrowing

Temperature (K) 455 500 550

Co buried (10−3 ML) 8.9 ± 0.5 8.5 ± 0.5 40 ± 1
Au transferred to surface (10−3 ML) 8.1 ± 2 10 ± 2 41 ± 2

the remaining, unperturbed bilayer Co clusters to which they attach exclusively
(Fig. 16b). It is worth noting that the gold atoms ejected from the sunken Co clusters
do not necessarily stick to the nearby Co bilayer clusters but are sometimes found
several tens of nanometers away, as can be seen in Fig. 16b. This fact is highlighted
by the histograms in Fig. 17, in which the distance between gold islands has been
reported. The maximum probability of occurrence is reached for r̄ = 70 nm. The
localization of the ejected gold atoms suggests long-range substrate-mediated mass
transport.

What is the diffusion mechanism at the origin of the long-range mass transport?
A plausible mechanism consists in a gold ejection close to a buried Co cluster,
surface diffusion afterward, and a preferential nucleation at the Co cluster edges.
However, kinetic Monte Carlo simulations performed on a rigid network consisting
of 120 Au(111) reconstructed unit cells and corresponding to 240 Co clusters show
that 92% of the ejected gold atoms stick to Co clusters located within a radius of
20 nm around the emitting island (Fig. 17). This percentage becomes even 100% for
a radius of 25 nm, in contradiction with the experimental results described above. An
additional clue ruling out the above mass transport mechanism is the high activation
energy necessary to initiate this process.

Figure 19 displays the minimum energy path (MEP) corresponding to the ejec-
tion of a Au atom close to a 10 atoms Co cluster deposited on a DL and its
propagation by means of conventional hopping. The computational slab (Fig. 18)
used in our calculations consists in a crystal of 22 × 22 × 8 Au atoms cut perpen-
dicular to the <111> direction with a

√
3 × 22 reconstructed top layer of (22 × 23)

Au atoms [80]. The MEP calculation shows that the ejection of a Au atom close

T = 450 K
T = 550 K
Monte Carlo Calculation
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Fig. 17 Histograms of gold island–island distances after annealing at 450 and 550, respectively.
For each temperature, the data have been taken from six different STM images
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Fig. 18 Slab used in the simulations. Two discommensuration lines of highest corrugation run
along the < 1̄1̄2 > direction. The DLs (black atoms) separate regions (gray atoms) of a regular
fcc stacking from a smaller region with hcp faulted stackings. White atoms are the Co atoms (from
[33])

to the Co cluster requires an activation energy of 950 meV [(1) in Fig. 19]. The
large activation energy is due to the fact that a vacancy has to form in the gold
surface plane before it can be filled with a Co atom [(2) in Fig. 19]. The ejected Au
atom then propagates by conventional surface hopping with an activation energy of
about 100 meV [(3), (4), and (5) in Fig. 19]. The large activation energy necessary
for the Au atoms to escape from the edge of Co clusters makes this event highly
improbable.

The existence of a second mechanism for the long-range mass transport is based
on two observations. The first one is related to the reconstruction of the surface. As
was described in Sect. 4, such reconstruction consists in an overclosed packing along

Fig. 19 Energy profile for an ejection of a Au atom close to a 10 atom Co cluster deposited on a
DL, followed by its diffusion by means of conventional hoping: (1) ejection of the Au atom, (2)
filling of the vacancy by a Co atom, and (3), (4), and (5) conventional surface hopping of the Au
atom
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Fig. 20 Energy profile for an 1D soliton-like propagation mechanism along the < 1̄1̄2 > direction
inside the discommensuration line

the direction <1̄10> in order to release the strain due to the surface mismatch [29].
However, there is no overclosed packing along the perpendicular <1̄1̄2> direction
(Fig. 18), inducing a strong tensile stress along this direction. Moreover, during the
growth, the tensile stress is increased due to the growth of Co clusters and their
influence on the surface. Then, a way for the system to release the tensile stress is
the insertion of a small atom along the <1̄1̄2> direction (Fig. 21). MEP calculations
corresponding to this scenario were performed along the < 1̄1̄2> direction of the
DL. In Fig. 20 a small activation barrier is noticeable, less than 100 meV, followed
by an energy gain of about 1 eV and a series of smaller barriers. By analyzing the
corresponding configuration in real space (Fig. 21), it was found that the first barrier
(labeled (1) on Fig. 20) corresponds to the burrowing of the Co atom. This insertion
process is the first step of a twosteps exchange process. A similar process has been
found in the case of the burrowing of Ni clusters into a Au(111) substrate as well
[78]. However, in the latter case, the gold ejection occurs close to the insertion point

Fig. 21 Cut view through the Co cluster (smallest atoms). The strain induced by the Co insertion
into the gold surface is given by the line
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whereas in the present case, the cobalt insertion along the < 1̄1̄2 > leads to the
formation of a strain as shown in Fig. 21. Note that the value of the activation energy
for inserting the cobalt adatom into the surface plane (100 meV) is much smaller
than the one calculated in the case of Ni/Au(111) (580 meV) [78]. This is related to
the additional tensile stress exerted by the cobalt cluster on the surface plane [68].
The smaller barriers of the MEP (Fig. 20) correspond to the propagation of this
defect along the <1̄1̄2> direction. Hence, the strain induced by the cobalt insertion
can be identified as a traveling soliton wave, propagating along the <1̄1̄1> direction.
The wave form shown in Fig. 21 is approximatively described by the equations

xn (t) = na − a

2
(tanh (α (na − vt)) − 1) , (34)

zn (t) = z(0)
n + Δz

cosh (α (na − vt))
. (35)

a and Δz are the maximum displacement of the atoms in the chain along, respec-
tively, the < 1̄1̄2> direction and the <111> ones. v is the velocity of the soliton
wave and α is its width.

The propagation is strongly anisotropic. Indeed, an exchange along <2̄2̄1>, as
calculated above, was found more favorable than an exchange in the perpendicular
<11̄0> direction, which clearly demonstrates that the propagation is channeled by
the DLs.

Figure 22 displays the atomic displacement of the atoms involved in the process
as a function of the sample number. A collective motion involving several atoms
highlighted by the rings is observed. Once the soliton is formed, it propagates along
a row of atoms belonging to the DL by small changes in the position of atoms,
leading to the smaller oscillations seen in the energy curve in Fig. 20.

The 1D character of the propagation along an atomic row allows us to investigate
the dynamics of the soliton in the Frenkel–Kontorova framework [81]. In this model,

Fig. 22 Atomic displacements involved in the solitonic-exchange mechanism of surface diffusion.
The rings highlight the concerted motion of the atoms (from [33])
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a chain of N + 1 atoms, connected by springs, is assumed to be subjected to a
sinusoidal substrate potential. Since the chain length L = (N − 1) b (where b is the
interatomic distance between atoms in the bulk) is held constant upon embedding
an extra atom, the static energy of the chain is given by

H =
N∑

n=1
A
(
1 − cos 2π

b xn
)+

N−1∑
n=1

γ

2 (xn+1 − xn − a) 2

+λ1x1 + λ2
(
xN − (N − 1) b + λ3

(
x j − jb − β

))
, (36)

where γ is the spring constant between neighboring atoms in the chain, a is the
interatomic distance between atoms in the surface, and A is the amplitude of the
harmonic potential exerted by the environment on the atoms of the embedded chain.
λ1 and λ2 are the Lagrange multipliers which keep the position of the first and
the last atoms of the chain fixed. λ3 is an additional constraint which allows us
to clamp the atom j at a given position jb + β. The Peierls barrier, governing
the motion of the soliton wave, can then be estimated by using Hobart’s procedure
[82]. In this approach, the equilibrium equation ∂ H/∂xi = 0 is used to adjust λ1

and λ2 in order to get the correct x j and xN positions. The Peierls barrier is then
calculated from the total energy variation as a function of the displacement β of
the soliton. The value of A = 0.30 eV has been chosen such that the solution of
the equilibrium equations ∂ H/∂xi = 0 matches the atomic displacements shown
in Fig. 22. Estimating γ = 21.7 eV/Å2 from Rose’s universal equation of states
[83] and taking a typical chain length of L = 120 nm from a segment of a DL
in Fig. 16a, a Peierls energy of 26 meV is calculated. The low migration barrier of
the soliton confirms that this mechanism strongly competes with the conventional
surface diffusion as found experimentally.

6 Conclusions

Looking at surfaces from the theoretical point of view by keeping in mind that these
objects can be inhomogeneous has always been challenging due to the physical
dimensions of the systems and of the related issues to be faced. This chapter has
shown that the computational burden of atomic-scale calculations on extended sur-
face “defects” (making surfaces at the same time very different from ideal ones, but
much more realistic) can be circumvented by using reliable interatomic potentials
and appropriate simulation probes. The first issue addressed in this chapter has been
the one of the topology of a reconstruction, characterizing substrates such as the
Pt(111) and the Au(111). We have shown that a reconstructed surface features pecu-
liar regions, playing a crucial role in establishing the details of the nucleation and
diffusion mechanisms. As a second issue, specific examples have been provided of
migration mechanisms for atoms moving on the Pt(111) and Au(111) substrates. In
both cases, combinations of simple hopping and exchange mechanisms have been
underlined, enhancing the importance of both elementary steps to elucidate diffusion
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on inhomogeneous substrates. Finally, our report contains an example of long-range
diffusion that can be explained by resorting to elastic effects and elementary atomic
processes, fully consistent with experimental observations. What is the future of
atomic-scale calculations in the area of surface diffusion and growth of metal-
lic systems . . .? Even though the interatomic potential approach proved valuable,
the explicit account of the electronic structure in defining the interaction appears
unavoidable. Such applications are prohibitive due to the localization of d elec-
trons (increasing the size of the basis set in plane wave calculations, for instance),
the minimal size of the systems of interest, and the metallic nature of bonding.
Recent attempts using methods scaling linearly with the size of the systems appear
promising [84]. This holds in cases for which an extended dynamical simulation
can be safely replaced by a less costly structural optimization with no sacrifice of
atomic-scale understanding.
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Electronic, Magnetic and Spectroscopic
Properties of Vanadium, Chromium
and Manganese Nanostructures

C. Demangeat and J.C. Parlebas

Abstract This chapter presents some aspects of the electronic, magnetic and spec-
troscopic properties of vanadium, chromium and manganese aggregates deposited
on substrates or embedded in a host, mainly metallic. Those elements present a
sizeable magnetic moment in their atomic form and non-ferromagnetic behaviour
for the corresponding bulk materials. More precisely, vanadium, except in the
atomic form and for very small cluster sizes (free or embedded), is magnetically
dead. It presents a sizeable moment when in contact with strong ferromagnets like
Fe, Co or Ni. Chromium presents, in the bulk form, a competition between clas-
sical anti-ferromagnetic behaviour and spin density wave (SDW). Those various
behaviours are energetically almost degenerate in energy so that they can be both
present. However, when the dimension shrinks, the SDW configuration does not
survive. Moreover, when Cr atoms are in contact with Fe, Co or Ni a competi-
tion between the intrinsic non-ferromagnetic behaviour of Cr and the induced fer-
romagnetic polarization arising from the strong ferromagnet leads to complicated
magnetic maps. Also the magnetic behaviour of manganese is non-trivial. The bulk
magnetic behaviour is of complex anti-ferromagnetic type with some kind of non-
collinear behaviour. Ferromagnetic behaviour of Mn aggregates generally seems
unlikely, but a few Mn atoms may acquire a somewhat ferromagnetic configuration.
However, without a constraint of collinearity, those Mn atoms follow non-collinear
behaviour.
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1 Introduction

The temperature tends to kill the magnetic behaviour of most of the magnetic com-
ponents, an exception being described theoretically by Kondo [1]. The “paramag-
netic Curie temperature” was defined after the very famous work of Pierre Curie
[2] displaying a divergence of the magnetic susceptibility. Theoretical explanation
was put forward by Langevin [3] within a model based on non-interacting indi-
vidual magnets. This could explain the behaviour of paramagnetic systems, but
not those where some directional magnetic ordering was present. Later on, Weiss
[4] introduced the idea of “molecular field” in order to explain this “ferromag-
netic behaviour”. Shortly after, Weiss introduced the “experimental magneton”, also
called “Weiss magneton” [5]. Only integer numbers were allowed to represent the
magnetism of Ni, Co and Fe so that for Ni the number 3 was attached (3 Weiss mag-
netons), 8 for Co and 11 for Fe. A few years later, Dirac [6] postulated the spin of the
electron and opened the way to the Bohr magneton. Roughly, the Bohr magneton,
which has a quantum mechanical origin, is equal to five “Weiss magnetons”.

The quantum mechanical approach was able to explain some experimental results
for which the classical theory was unable to give satisfactory answers. However,
due to large number of electrons present in any condensed matter system, theo-
reticians introduced some semi-phenomenological Hamiltonians. The Ruderman–
Kittel–Kasuya–Yosida (RKKY) [7, 8], originally proposed by Ruderman and Kittel
[9] as a means of explaining unusually broad nuclear spin resonance lines, was
extended by Kasuya [7] to explain indirect exchange coupling between localized d
electron spins interacting via conduction electrons. Soon later, in order to explain
the onset of magnetism for some systems when the temperature increases, Kondo [1]
proposed a model in which, at low temperature, the magnetic moment of localized
d electrons is screened by conduction electrons. Because those conduction electrons
are less bound than localized d electrons, temperature effect tends to decouple both
systems, so that, above a temperature called Kondo temperature, the magnetism
of localized electrons do reappear. Hubbard model [10] is a good approximation
for particles in a periodic potential. It can be considered as an improvement of the
tight binding model. In the tight-binding approximation, electrons are viewed as
occupying standard orbitals of their constituent atoms with “hopping integrals” or
“transfer integral” between neighbouring atoms. Hubbard model includes the so-
called onsite repulsion which stems from the Coulomb repulsion between electrons.
The Haydock recursive method [11] based on the tri-diagonalization of Lanczos
matrices [12] allowed the determination of the density of states in the direct space.
Thus, the Hubbard Hamiltonian can be used to describe nanomaterials which do not
present any essential periodicity.

Nowadays, most of the microscopic description of magnetic materials are based
on density functional theory (DFT) following Kohn’s approach [13, 14]. This
approach is well documented in many textbooks so that there is no need to add
here any new details. In general those DFT codes work in the reciprocal space, so
that they essentially apply to materials presenting periodicity. For nanostructures,
this periodicity is broken and in order to use those codes it is necessary to rely on
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supercells, periodically repeated. Let us note a recent book by Gross [15] focus-
ing on the microscopic perspective of Surface Science. As pointed out by Gross,
while most of the processes described via DFT are assumed to occur in the elec-
tronic ground state, the theoretical description of non-adiabatic phenomena has not
reached the same level of maturity.

It is only in very rare cases that one can perform ab initio DFT calculations in real
space. Frota-Pessoa [16] and Klautau & Frota-Pessoa [17] developed a real space
linear muffin-tin-orbitals method in the atomic-sphere approximation (RS-LMTO-
ASA). Within a screened Korriga–Kohn–Rostocker (KKR) method, Wildberger
et al. [18] determined the Green function of an adsorbed cluster on a surface in
terms of the surface Green function of pure substrate via a Dyson equation. Those
authors extended their formalism in order to determine the non-collinear magnetism
of nanoclusters on substrates.

On the one hand, DFT calculations are expected to be the best tool for the descrip-
tion of electronic nanostructures either free or deposited on a substrate. On the other
hand, XMCD experiment is expected to be a versatile tool to discriminate between
magnetic and non-magnetic behaviour (see for instance [19] and references therein).
As already discussed by Dreysse and Demangeat [20], some transition elements
like V, Rh and Pd, although non-magnetic in bulk phase, may present some kind of
magnetization in the case of reduced geometry. This could be simply explained by a
reduced coordination of transition metal atoms leading to an increase of the density
of states at the Fermi level and consequently, via Stoner criterion, to the onset of
ferromagnetism. Bansmann et al. [21] further pointed out a considerable increase of
the magnetic anisotropy in those small clusters. Very recently Honolka et al. [22]
questioned the onset of magnetism of Ru and Rh impurities and clusters deposited
on non-magnetic substrates. They reported element-specific XMCD measurements
of local magnetic moments of Ru and Rh adatoms and cluster ensembles deposited
at 5 K on Ag and Pt surfaces. No magnetic moment was detected in the cover-
age range between 0.12 and 2.0 ML, independently of the magnitude of externally
applied static magnetic fields. This is clearly at odds with most of the theoretical cal-
culations displaying sizeable magnetic moments for those configurations. Honolka
et al. [22] discussed the probable origin of those discrepancies: (i) a possible alloy-
ing of Rh, Ru with substrates; (ii) the absence of full relaxation and (iii) the neglect
of many-body effects (Kondo or local spin fluctuations) in theoretical calculations.
Also, De Siervo et al. [23] performed both experimental and theoretical studies of Pd
ultrathin films on Ru(0001). No hysteretic MOKE loop was observed for Pd films on
Ru(0001), as measured at 160 K. DFT calculations were done using the Quantum
ESPRESSO package (Baroni et al.) within LDA or GGA approaches. Moreover,
GGA predicts a ferromagnetic ground state for bulk Pd at odds with experimental
results, so that GGA cannot be used for the determination of magnetic polarization
of Pd on a Ru(0001) surface. For LDA, on the contrary, no magnetic moment is
obtained, neither in fcc and hcp bulk Pd nor for Pd thin films on Ru(0001). Results
by De Siervo et al. [23] confirm that GGA does not reproduce the experimental
results of bulk Pd magnetization. Their claim that their LDA results are in agreement
with their MOKE results, displaying non-magnetic behaviour for Pd on Ru(0001), is
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not really convincing because temperature effect may be important at 160 K. In that
sense, the results of Honolka et al. [22], displaying no magnetization at 5 K, look
more convincing. This chapter presents an overview of the electronic, magnetic and
spectroscopic properties of a few transition metal-based nanostructures. In this short
lecture note, it is difficult to also report about a new class of materials, namely those
elements, the magnetism of which seems to be linked to “sp” electrons. Oxides
like ZnO, TiO2, HfO2, which are non magnetic wide band semiconductors, could
present high-temperature magnetism when oxygen defects are introduced [24]. Also
ZnO doped with co-impurities displays anti-ferromagnetic behaviour [25]. A review
on the “Origin of ferromagnetic response in diluted magnetic semiconductors and
oxides” was written most recently by Dietl [26]. Also let us mention, among a great
number of them, a paper by Schulthess et al. [27] concerning the first-principles
calculation of the electronic structure of Mn-doped GaAs, GaP and GaN semicon-
ductors. However, here the focus will be mainly on another timely subject which is
the description of non-collinear (or unconstrained) magnetism. This non-collinear
magnetism arises around topological defects like surface steps, skew dislocations or
vacancies. The specific case of trimers will be discussed in full detail because it is
the most simple case between frustration and non-collinear magnetism.

Section 2 is devoted to general trends of magnetism along the 3d transition metal
series. Following the pioneering work of Blügel et al. [28], a considerable num-
ber of papers were devoted to the study of magnetism of thin films of transition
metals deposited on substrates. See, for example, the review paper by Dreysse and
Demangeat [20]. Also spectroscopic description of the magnetism can be found in
the review by Binns et al. [29]. Most calculations were performed by taking account
for periodicity in the direction perpendicular to the substrate. Then physicists con-
sidered not only films with one chemical component but also alloys. Nowadays
the trend is clearly to sub-monolayer coverage, like clusters or chains, as shown
in a relatively recent report by Vega et al. [30]. From the experimental side, the
spin-polarized scanning tunnelling spectroscopy is now currently used to probe the
spin polarization of individual atom adsorbed on various substrates [31].

Section 3 is devoted to vanadium nanostructures. While vanadium-free atom
presents a magnetic moment of 3μB, bulk V is clearly non-magnetic. For dilute V
atoms in noble metal or in some very specific case, like Au4V [32], magnetization
is not completely killed. It has been argued that V surface is magnetic both exper-
imentally and theoretically but serious doubts remain. It has also been argued that
free-standing or adsorbed V clusters could be magnetic but no conclusive answer
has been reached yet. We shall discuss those points in full detail by giving all
the pro and counter arguments. It seems that V is magnetic only in contact with
a magnetic system. It is generally admitted that strong induced magnetization is
obtained for thin V nanostructures in contact with Ni, Co and Fe metals. Specific
examples will be given, but in all considered cases the induced polarization is short
ranged.

Section 4 deals with recent aspects of Cr nanostructures. Bulk Cr is known to
present spin density waves (SDWs), but in thin films, the SDW has no space to
develop so that it is clearly killed. Therefore, for most Cr nanostructures reported
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here, SDW is clearly absent. Thus magnetism oscillates between ferromagnetism
when a thin Cr film is in contact with Fe, Co or Ni and anti-ferromagnetic-like
behaviour. For thicker slabs, only Cr atoms at the interface with a strong ferromagnet
are ferromagnetically polarized, whereas other Cr atoms exhibit either layered anti-
ferromagnetic polarization or in-plane anti-ferromagnetic polarization. When the
symmetry is broken, non-collinear magnetism takes place. A particular important
aspect concerns a Cr trimer, either free standing or adsorbed. In all cases it looks
non-collinear [33]. However, it has been recently argued by Kudasov and Uzdin [34]
that a compact Cr trimer may have very complex magnetism. For an isocele trimer,
the two atoms, which are close, actually present anti-ferromagnetic configuration
whereas the remaining Cr seems more like an isolated atom and may be described
by a Kondo model.

Section 5 is devoted to Mn nanostructures. Mn is a very important element
because in its atomic form it presents a magnetic moment as high as 5μB. However,
in its bulk form (see [35]) it is mainly non-collinear. It can become ferromagnetic
in contact with a strong ferromagnet. Examples can be found in the review report
by Demangeat and Parlebas [36]. Usually the induced polarization by Fe, Co or Ni
metals is short ranged, so that the ferromagnetic behaviour of Mn is limited to Mn
atoms in direct contact with a strong ferromagnet. Moreover, recent calculations by
Hafner and Spisak [35] have shown that, for one monolayer of Mn in contact with
Fe(001), some kind of non-collinearity stabilizes the system. For completeness let
us mention the review report of Fukamichi et al. [37] concerned with magnetic and
electrical properties of Mn alloys.

Section 6 presents some concluding remarks as well as a discussion about other
trends in magnetism. The present content was mainly concerned with a description
of V-; Cr- and Mn- based nanostructures at T = 0 K. At this temperature, the mag-
netization is frozen. However, at laboratory temperature experiment, other mecha-
nisms can take place, so that it is necessary to mention temperature effects which are
of utmost interest in the description of dilute magnetic semiconductors (DMS) [38].
Indeed these DMS appear to be the most versatile component for spin electronics.
Also, spin dynamic aspects in confined magnetic structures [39] should be pointed
out. The magnetization could be disturbed by an intense ultra short laser pulse or
by a short magnetic field pulse that tips the magnetization out of its equilibrium
position.

2 Trends of Magnetism Along the 3d Transition Metal Series

Since the work of Blügel et al. [28], concerning the magnetic properties of 3d tran-
sition metal monolayers on metal substrates, a considerable number of papers have
been devoted to 3d nanoclusters deposited on substrates. Older work on that subject
can be found in the review by Vega et al. [30]. Here mainly we focus on the most
recent works treating small clusters [40], chains [41] and sub-monolayer coverages
[42] on metallic substrates. More and more calculations are now considering uncon-
strained (or non-collinear) magnetization.
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2.1 From Adatoms to Monolayers Through Chains

Lounis et al. [40] studied magnetic states of 3d atom clusters in and on Ni(001)
surface. In a first step they restricted to collinear magnetization for adatoms, dimers
and trimers. For 3d adatoms on Ni(001) Sc, Ti, V and Cr are anti-ferromagnetically
(AF) coupled to the substrate whereas the couplings of Mn, Fe, Co and Ni are
ferromagnetic (FM). Clearly the AF–FM transition occurs between Cr and Mn. For
dimers, it is shown that, on the one hand, V atoms remain anti-ferromagnetically
coupled to the substrate whereas Fe atoms stay ferromagnetically coupled. On the
other hand, Cr and Mn dimers show magnetic frustration. Lounis et al. [40] also
extended the full potential Korringa–Kohn–Rostocker Green function method to
treat non-collinear magnetic nanostructures. Focusing on Cr and Mn dimers and
trimers they obtained very different results between these two elements. For Cr
dimers, the ground state stays collinear whereas it is non-collinear for Mn. Cr
and Mn trimers present collinear ground states, but the Mn trimer also presents a
metastable non-collinear state, a few meV above its collinear ground state. However,
when going from a Ni(001) substrate to a Ni(111) one, non-collinear configurations
for Cr and Mn are more likely to be considered [43].

Similarly, in mono-atomic 3d transition metal chains, Mokrousov et al. [41]
investigated magnetic order and exchange interactions, within a full potential lin-
earized augmented plane wave method (FLAPW), in its 1D and 2D formulations,
as implemented within a FLEUR code. They investigated free-standing chains of
V, Cr, Mn, Fe and Co, as well as deposited ones on unreconstructed (110) surfaces
of Cu, Pd, Ag and NiAl. Actually, Cr and Mn chains show a transition from ferro-
magnetic coupling in free-standing chains to anti-ferromagnetic coupling on (110)
surfaces of Pd, Ag and NiAl. For Fe and Co chains on NiAl(110), ferromagnetic
and anti-ferromagnetic states differ by only 2 meV, suggesting the possibility of a
more complex ground state.

2.2 Sub-monolayer Coverage of 3d Transition Metal Adatoms
on Co(001)

In the sub-monolayer regime, Carillo-Cazares et al. [42] investigated the coverage-
dependent magnetization of 3d transition metal adatoms on Co(001). The magnetic
map is reported in Table 1 for 3d adatoms from Sc to Ni and for concentration
x equal to 0.25 and 1.0 (see Fig. 1). The results for x = 0.5 are very similar to
those of x = 0.25, so that we only report them in Fig. 2. From these results it
is obvious that, for low 3d coverage, there is a drastic change of magnetic map
between Cr and Mn. It is only for 3d = Ni, Co and Fe that the ferromagnetic
coupling between 3d adatom and Co atoms is independent of 3d concentration.
This is obvious because those three elements are bulk like ferromagnets. For all
the other 3d elements a drastic modification of the magnetic polarization appears
when the coverage is modified. This is also obvious because those elements are
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Fig. 1 Positions of 3d
adatoms in the unit cell,
consisting of four sites
labelled by A, B, C and D.
For 3d0.25 E0.75 only the site
A is occupied by a 3d atom,
the others being empty (a).
For 3d0.5 E0.5 the 3d atoms
are located at sites A and B
whereas sites C and D are
empty (b). For 3d0.75 E0.25 the
3d atoms are located at sites
A, B and C whereas site D is
empty (c). Finally, for a
complete over-layer of 3d
atoms on Co(001), i.e. 3d1.00,
the A, B, C and D sites are
occupied by 3d atoms with A
and B of one type and C and
D of another type (d). Black
and grey dots represent 3d
atoms whereas white dots are
empty spaces (from [42])

essentially of non-ferromagnetic type in the bulk form. For Sc, Ti and V which
are non-magnetic in the bulk form the magnetization arises essentially from the
proximity with Co ferromagnet. For Cr and Mn whose intrinsic bulk magnetiza-
tion are rather complex, but mainly of non-ferromagnetic type, we can expect a

Fig. 2 (a) Magnetic map for 3d transition metal adatoms on Co(001) surface for concentration
x = 0.25, 0.50 and 1.00. The solid line is for 0.25 coverage, the dashed line for 0.50 coverage, and
the dotted line for 1.00 coverage. (b) Magnetic moment per atom (in μB), for atom in the position
A, for concentration of x = 0.25, 0.5 and 1.00 (from [42])



Properties of Vanadium, Chromium and Manganese Nanostructures 169

Table 2 Magnetic moment per atom (in μB) for Crx /Co(001) and Mnx /Co(001), with x = 0.25,
0.50, 0.75 and 1.00. The letters a, b, c and d represent the sites A, B, C and D of Cr or Mn atoms
and CoS, CoS-1 are Co atoms underneath Cr and Mn adatoms. In the case of x = 0.25, 0.50 and
0.75 (x = 1.00) we use four (two) inequivalent atoms per plane (from [42])

x 0.25 0.50 0.75 1.00

Cra (Mna) −3.91 (4.06) −3.84 (4.06) −3.43 (3.64) 2.94 (3.22)
Crb (Mnb) −3.84 (4.06) −3.43 (3.64) 2.94 (3.22)
Crc (Mnc) 2.99 (−3.59) −2.87 (−3.51)
Crd (Mnd) −2.87 (−3.51)
Cos 1.63 (1.66) 1.42 (1.56) 1.40 (1.35) 1.36 (1.15)
Coas−1 1.67 (1.66) 1.66 (1.66) 1.70 (1.72) 1.76 (1.75)
Cobs−1 1.65 (1.66) 1.66 (1.66) 1.70 (1.72) 1.76 (1.75)
Cocs−1 1.62 (1.62) 1.68 (1.68) 1.72 (1.70) 1.74 (1.79)
Cods−1 1.65 (1.66) 1.68 (1.68) 1.70 (1.70) 1.74 (1.79)

competition between the induced magnetization arising from the Co substrate and
an intrinsic anti-ferromagnetic coupling present in the bulk (see Table 2). For Ti
adatoms, the Ti–Co coupling is always of anti-ferromagnetic type: only the values
of Ti magnetic moments decrease when the concentration of atoms in the over-layer
increases. For Cr, an anti-ferromagnetic coupling between Cr and Co atoms is found
in the low-coverage regime. For a complete Cr over-layer on Co(001), an in-plane
anti-ferrimagnetic coupling is observed. However, the local values of Cr moments
remain as high as 2.94μB and –2.87μB contrary to the values observed for Sc, Ti and
V, where a drastic decrease appears when going from the low-coverage to the mono-
layer range. Besides, Izquierdo and Demangeat [44] pointed out the effect of crystal-
lographic faces on the magnetic polarization of a Co monolayer either on Cr(001) or
Cr(011) face. For Co on Cr(001) the Co monolayer is clearly of ferromagnetic type
whereas for Co on Cr(011) an in-plane anti-ferromagnetic configuration is obtained.
From that we can conclude that Co nanostructures could present non-ferromagnetic
behaviour: this is reminiscent of a RKKY behaviour for a pair of impurities in
noble metals. Also we can think of the Bethe curve displaying magnetic config-
uration (ferromagnetic–anti-ferromagnetic) versus distance between magnetic ele-
ments. For x = 0.5, we observe a moment of 3.84μB on Cr atoms at A and B
positions: the Cr–Co coupling is of anti-ferromagnetic type. When the concentration
of Cr adatoms reaches x = 0.75, we see in Table 2 an anti-ferromagnetic coupling
between Cr atoms at A and B positions and Co substrate as well as a ferromagnetic
coupling between the Cr atom at C position and the Co substrate. For Mn, a com-
pletely different behaviour is obtained. Now, for low Mn coverage (x = 0.25, 0.50),
a ferromagnetic coupling between Mn and Co is obtained whereas for a complete
Mn over-layer on Co(001) an in-plane antiferrimagnetic coupling is present. In order
to shed some light on the variation of the magnetic behaviour with concentration, we
report in Table 2 the variation of magnetic moments for both Cr and Mn adatoms
for x = 0.25, 0.50, 0.75 and 1.0 coverages. For x = 0.75, a complex magnetic
behaviour is present: contrary to Cr or Co, now the coupling between the Mn atoms
on A and B sites is ferromagnetically coupled to the Co substrate whereas an anti-
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ferromagnetic coupling is present between Mn atom at C position and Co substrate.
All these solutions reported here are “ground state” in the collinear constraint
approach.

2.3 Outlook

In this section we discuss the magnetic map of very small clusters [40, 43], chains
[41], periodic sub-monolayer coverage [42] of 3d transition metal elements on
metallic substrates. Calculations by Lounis et al. were performed within an uncon-
strained approach of the spin direction. One main conclusion is that the magnetic
map strongly depends on the crystallographic surface considered and on the num-
ber of nearest neighbours in the adsorbed nanostructure. Actually, V, Cr and Mn
nanostructures have some tendency to develop non-collinear magnetism, especially
when the substrate is non-magnetic. However, when the substrate is strongly mag-
netic this non-collinearity is somewhat quenched through the strong induced ferro-
magnetic polarization of the substrate. Thus, more detailed calculations are needed
concerning this competition between anti-ferromagnetic coupling, mainly present
in V, Cr and Mn, and the ferromagnetic induced polarization, arising from the
substrate. In many cases this competition leads to frustration and non-collinearity
[33].

Very recently, Tung and Guo [45] performed calculations of the electronic and
magnetic properties of linear and “zigzag” atomic chains of 3d transition metals
within a PAW–GGA approach. For all elements, a ferromagnetic state is obtained
whereas the anti-ferromagnetic state is not always present. Those states are either
stable or metastable. Giant magneto-lattice expansion is obtained for linear chains
of V, Cr, Mn and Fe. The shape anisotropy energy is found to be comparable to the
electronic one and always prefer an axial magnetization in both linear and zigzag
chains.

3 Vanadium Nanostructures

As discussed by Dreysse and Demangeat [20], vanadium nanostructures were on
the verge of magnetism. At a V(100) surface, this magnetism remains elusive [46].
However, Huttel et al. [47] evidenced a magnetic behaviour of vanadium embed-
ded in copper through X-ray magnetic circular dichroism (XMCD). Very recently,
within FLAPW, Hamad [48] reported on the determination of a magnetic map
for very thin V films on Mo(001). The topmost V layers relax inward and an in-
plane ferromagnetic ordering with appreciable magnetic moment is obtained on
V overlayers. Moreover the Mo atoms, in contact with V, do present a small induced
magnetic moment. The coupling between V and Mo atoms is of anti-ferromagnetic
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type. Also very recent calculations by Khmelevska et al. [32] have shown that a
specific phase of Au4V do present some magnetism. The strong dependence of
magnetic properties of Au4V upon the degree of chemical order has been the subject
of intense experimental studies and controversial theoretical interpretations. Using
a coherent potential approximation (CPA) method embodied in a Korringa–Kohn–
Rostocker (KKR) calculation, Khmelevska et al. [32] performed first-principles
calculation of Au4V, varying the degree of atomic chemical order from a disor-
dered fcc alloy to a fully ordered Ni4Mo-type structure. To sum up, they showed
that the complex behaviour is due to a combination of the following facts: (i) the
existence of anti-ferromagnetic interactions on a geometrically frustrated lattice,
(ii) highly non-trivial effects of chemical atomic order on the magnetic ordering
and (iii) a dependence of the vanadium local moment formation on the local atomic
environment.

Fritzsche et al. [49] used polarized neutron reflectometry to determine the abso-
lute magnetic moment of uncovered and V-covered Fe films in the thickness range
from 0.3 to 5.5 nm. The films were prepared by molecular beam epitaxy on a V(100)
buffer layer grown on a MgO(100) crystal. The measurements on the V-covered Fe
films revealed a reduction of 0.75μB per Fe interface atom which is in agreement
with some recent theoretical papers.

By a combination of element-specific X-ray resonant magnetic scattering
(XRMS) experiments and model Hamiltonian calculations, Remhof et al. [50]
showed that, upon hydrogen loading of a non-magnetic V spacer in Fe/V super-
lattices, the Fe magnetic moment becomes enhanced remotely, while the induced
anti-parallel V moment at the Fe/V interface remains unaffected. This long range
and remote control of Fe magnetic moments by hydrogen has been shown to be
due to the following effect: a redistribution of d electrons between Fe and V, as a
function of hydrogen concentration, leads to a shift of the d band relative to the
Fermi level and thus to a change of exchange splitting.

Calleja et al. [51] performed a comparative study of the structure, magnetic prop-
erties and magnetic anisotropies of the VCo system formed in two different stacking
sequences, namely, Co/V/MgO(100) and V/Co/MgO(100). These sequences gave
rise to different Co crystalline structures (hcp versus fcc) and therefore to differ-
ent magnetic behaviours. Within polarized neutron reflectivity and magnetization
measurements, Baczewski et al. [52] determined the magnetic structure of epitaxial
vanadium/gadolinium bilayers with different V thickness. The polarized neutron
reflectivity results showed that in the fully magnetized state of V/Gd bilayer, about
three to five monolayers of V became magnetic with a mean magnetic moment of
around 0.8μB. The V slab was then anti-ferromagnetically aligned with the Gd layer.
From magnetization measurements, Baczewski et al. [52] found an increase of the
Curie temperature of a V/Gd system as compared to pure Gd.

In this section we focus on (i) the magnetization of V clusters supported on a
Cu(111) surface [53] and (ii) the magnetization of V on Co(001) when going from
sub-monolayer coverage to thin V films on Co(001) [54].
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3.1 Non-collinear Magnetization of Supported V Clusters

Within a self-consistent non-collinear real space method, based on the Haydock
recursion method [11, 53] determined the magnetization of very small V clusters
on a Cu(111) surface. The method used is an extension of the collinear version
of the real space (RS) LMTO-ASA method [16] to non-collinear arrangements of
magnetic moments [53, 55]. The ground state for three V atoms forming an equi-
lateral triangle presents highly non-collinear magnetic moments with an angle of
120◦ between them. When these bond lengths are modified, so that the frustration is
avoided, Bergman et al. [53] found an anti-ferromagnetic ground state.

3.2 From V Sub-monolayer Coverage to V Thin Film on Co(001)

First we present results concerning a V sub-monolayer coverage, the geometrical
configurations of which already have been reported in Fig. 1. For all V concen-
trations, from 0.25 to 0.75, a sizeable magnetic moment per V atom is always
obtained. Moreover an anti-ferromagnetic polarization between V and Co atoms
is predominantly obtained and the results are reported in Table 3. Let us comment
these results. First, when V concentration is low (0.25 monolayer) the magnetic
moment on each V atom is as high as 2.72μB whereas the magnetic moments of
Co surface atoms (in contact to V) are slightly diminished. This can be explained
from the fact that V atoms are nearly isolated (at least far from each other) and
Co atoms, being ferromagnetic, are inducing magnetization on V atoms. Second,
when the concentration is 0.5 monolayer with the geometrical configuration dis-
played in Fig. 1b, the V–V distance is diminished. This leads to two effects: (i) a
small decrease of V magnetic moment and (ii) also a small decrease of Co magnetic
moment. For a V concentration of 0.75 monolayer, a strong decrease of V moments
is observed. More precisely, V atoms at next nearest-neighbour positions, i.e. at A
and B, display a sizeable decrease of their magnetic moments, as compared to the
case of 0.5 monolayer coverage. Moreover the third V atom at C position (in the
unit cell shown in Fig. 1c) presents a ferromagnetic coupling with the Co substrate
and an anti-ferromagnetic coupling with its nearest-neighbouring V atoms at A and
B positions.

In order to be complete, we also considered higher V coverages in order to see
more precisely the effect of V–V distance on V magnetic moments. The mean
magnetic moment for V atoms in terms of V coverage is reported in Fig. 3. For
a complete V monolayer coverage a drastic modification of the distribution of V
magnetic moments is found. For one V monolayer on Co(001) we considered an
unit cell of successively one and two inequivalent V atoms in order to see if com-
plex magnetic configuration could be stabilized. For one inequivalent V atom, per
plane, both layered ferromagnetic and anti-ferromagnetic couplings can be obtained
whereas for two inequivalent V atoms in-plane anti-ferromagnetic configuration can
also be obtained.
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Table 3 Magnetic moments (in μB) for three concentrations of V atoms on Co(001) slabs: (a) V0.25

E0.75 corresponding to configuration (a) of Fig. 1; V0.50 E0.50 corresponding to configuration (b) of
Fig. 1. Magnetic moments on V atoms on sites A and B are equal, due to symmetry; and (c) V0.75

E0.25 on Co(001) fcc substrate. For (c) the magnetic moments on V atoms are found inequivalent.
A, B, C and D are four sites of the unit cell; E is the empty space. Co4 (Co1) atoms are in the
interface layer with V atoms (in the centre of the slab) (from [54]).

(a) (b) (c)
V0.25 V0.50 V0.75

Atom Atom Atom

Va −2.72 Va −2.57 Va −1.67
Eb −0.01 Vb −2.57 Vb −1.67
Ec −0.07 Ec −0.12 Vc 0.86
Ed −0.07 Ed −0.12 Ed 0.11

Co4a 1.54 1.30 1.32
Co4b 1.54 1.30 1.32
Co4c 1.54 1.30 1.32
Co4d 1.54 1.30 1.32
Co3a 1.68 1.69 1.75
Co3b 1.64 1.69 1.75
Co3c 1.65 1.68 1.73
Co3d 1.65 1.68 1.73
Co2a 1.77 1.75 1.70
Co2b 1.77 1.75 1.70
Co2c 1.77 1.75 1.70
Co2d 1.77 1.75 1.70
Co1a 1.74 1.73 1.71
Co1b 1.74 1.73 1.71
Co1c 1.74 1.74 1.70
Co1d 1.74 1.74 1.70

Fig. 3 Mean magnetic moment per V atom (in μB) and taken in function of V coverage. A drastic
change of the direction of polarization is observed at full V coverage (from [54])
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For V sub-monolayer coverage on Co(001), recent ab initio calculations by
Carrillo-Cazares et al. [54] and Hong [57] obtained sizeable magnetic moments on
V atoms with an anti-ferromagnetic coupling between V and Co atoms. The results
obtained by Carrillo-Cazares et al. [54] were determined within the TB-LMTO code
in ASA approximation. FLAPW approach was used by Hong [57] and the results
obtained were very similar to those of Carrillo-Cazares et al. [54], except for a
complete V monolayer on Co(001). Hong [57] got a small magnetic moment on
V atoms, a small decrease of the Co moment at the V/Co interface as well as an
anti-ferromagnetic coupling between V and Co atoms, whereas Carrillo-Cazares
et al. [54] obtained a much larger moment on V atoms with a ferromagnetic cou-
pling between V and Co atoms. The discrepancy seems to arise from the relaxation
effect taken into account by Hong [57]. In their paper, Carrillo-Cazares et al. [54]
used the same lattice parameter for Co and V: this is indeed not correct. In a more
recent paper Carrillo-Cazares et al. [56] utilized the pseudopotential plane wave
package of Baroni et al. [58] to perform additional calculations with relaxations
along the z-axis. To solve the problem, Carrillo-Cazares et al. [56] followed the
growth procedure of Huttel et al. [59], i.e. Co and V atoms deposited on Cu(001)
substrates. Calculations were performed in the slab-geometry approach. For one and
two complete V layers on Co(001), Carrillo-Cazares et al. [56] obtained (Table 4) an
anti-ferromagnetic coupling at the Co/V interface in agreement with Hong [57]. In
a second calculation Carrillo-Cazares et al. [56] tried to recover the result appearing
in the last line of Table I of Huttel et al. [59], i.e. the system where 1.8 ML of V
is grown on a Cu(100) substrate and covered by 7 ML of Co. For the calculation,
Carrillo-Cazares et al. [56] took a slab of 7 layers of Cu(100) on which the V–Co
layers were deposited. Table 5 reports the results of various geometries starting with
a pure Cu film displaying no magnetism. When V layers are deposited on Cu no
onset of magnetism is seen. Thus in Table 5, only the distances from the centre
of the Cu slab are reported for pure Cu slab and for V over-layers on Cu(001)
because no spin polarization has been obtained. However, when the two V mono-
layers, at the top of a Cu(001) film, are covered by one and two layers of Co, these
Co atoms do present a sizeable magnetic moment in agreement with the XMCD

Table 4 Magnetic moments (in μB) and z atomic positions (in a.u.) with respect to the Co1 layer
at the centre of the Co slab of 7 layers (noted by 0.00), for Vn layers (n = 1, 2) on Co(001), (a)
one V monolayer on fcc Co(001) and (b) two V layers on fcc Co(001) (from [56])

(a) (b)

V/Co(001) 2V/Co(001)

μ z μ z

V2 −0.03 16.985
V1 −0.26 13.071 −0.20 13.162
Co4 1.34 9.670 1.35 9.606
Co3 1.78 6.521 1.75 6.481
Co2 1.77 3.229 1.76 3.214
Co1 1.77 0.000 1.76 0.000
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Table 5 Magnetic moments (in μB) and z atomic positions (in a.u.) with respect to the Cu1 layer
at the centre of the slab (noted by 0.00) for, respectively, (a) the fcc Cu(001) surface; (b) one
V monolayer on fcc Cu(001) substrate; (c) two V layers on fcc Cu(001) substrate; (d) one Co
monolayer on V2/Cu(001); and (e) 2Co layers on V2/Cu(001) (from [56])

(a) (b) (c) (d) (e)

Cu(001) V 2V Co/2V 2Co/2V

z z z μ z μ z

Co2 1.91 25.013
Co1 1.33 21.734 1.49 22.002
V2 18.294 −0.31 18.418 −0.19 18.393
V1 14.385 14.487 −0.03 14.506 −0.07 14.481
Cu4 10.545 10.664 10.672 0.00 10.660 −0.00 10.643
Cu3 7.089 7.096 7.099 0.00 7.087 0.00 7.079
Cu2 3.536 3.555 3.550 0.00 3.543 0.00 3.539
Cu1 0.000 0.000 0.000 0.00 0.000 0.00 0.000

results of Huttel et al. [59]. Calculations also found an induced polarization on V
sub-surface atoms but those values are at odds with those of Huttel et al. [59]: they
are much smaller. However, an increase of V polarization can be obtained by con-
sidering an ordered Co–V ordered alloy at a Co/V interface. As shown in Table 6, a

Table 6 Magnetic moments (in μB) and z atomic positions (in a.u.) with respect to the cen-
tre of the slab (noted by 0.00) for (a) Co/CoV/V/Cu(001); (b) 2Co/CoV/V/Cu(001); and (c)
3Co/CoV/V/Cu(001) (from [56])

Co/VCo/V 2Co/CoV/V 3Co/CoV/V 4Co/CoV/V

μ z μ z μ z μ z

Co5a 1.91 31.193
Co5b 1.91 31.180
Co4a 1.92 27.887 1.72 28.094
Co4b 1.92 27.887 1.72 28.094
Co3a 2.01 24.729 1.81 24.823 1.82 24.805
Co3b 1.84 24.678 1.67 24.790 1.68 24.772
Co2a 1.17 21.447 1.27 21.600 1.16 21.466 1.17 21.544
Co2b 1.17 21.447 1.27 21.600 1.16 21.466 1.17 21.544
Co1 0.55 18.529 0.26 18.302 0.40 18.218 0.25 18.452
V2 −0.85 18.374 −0.63 18.417 −0.74 18.416 −0.69 18.302
V1b 0.10 14.589 0.05 14.527 0.02 14.506 0.01 14.541
V1a 0.10 14.589 0.05 14.527 0.02 14.506 0.01 14.541
Cu4a 0.01 10.768 0.00 10.722 0.00 10.699 0.00 10.732
Cu4b 0.00 10.772 0.00 10.713 0.00 10.688 0.00 10.723
Cu3a 0.00 7.157 0.00 7.132 0.00 7.124 0.00 7.123
Cu3b 0.00 7.157 0.00 7.132 0.00 7.124 0.00 7.123
Cu2a 0.00 3.575 0.00 3.565 0.00 3.565 0.00 3.559
Cu2b 0.00 3.575 0.00 3.565 0.00 3.565 0.00 3.559
Cu1a 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000
Cu1b 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000



176 C. Demangeat and J.C. Parlebas

polarization of about 0.7–0.8 μB can be obtained, as compared to 1.2μB, deduced by
Huttel et al. [59].

3.3 Outlook

In this section we mainly discuss some attempt to describe the onset of non-collinear
magnetization of V clusters supported on a Cu(111) surface, as well as the induced
polarization of V atoms in contact with Co(001). For V compact trimer on Cu(111),
it has been shown that the ground state is non-collinear. On the other hand, there
is no doubt about a short-ranged induced polarization when those vanadium nan-
oclusters are deposited on a strong ferromagnet: this has been seen when V atoms
are in contact with Co(001). Carrillo-Cazares et al. [54, 42, 56] did perform var-
ious ab initio calculations, in the collinear approach, but taking into account the
relaxation. It is clearly shown that, for V nanoclusters, relaxation is fundamental for
the determination of spin polarization. The reason is that V is at the verge of mag-
netism so that any external effect may induce (or destroy) the magnetization in those
nanostructures. Nowadays, contrary to Cr and Mn for which magnetization is most
generally present, the V nanostructures do not present (in general) any confirmed
experimental proof of magnetization. It is only for very dilute V atoms in Cu and
for a Au4V-specific phase that magnetization has been show to be present.

On the contrary, V atoms in contact with a strong ferromagnet do present induced
polarization. This induced polarization is clearly short ranged, i.e. only nearest and
somewhat next-nearest V atoms to the strong ferromagnet are clearly polarized.
There are in fact two opposite effects for the induced polarization. The first one
concerns the number of V atoms in contact with the ferromagnet: if the number of V
adatoms is small then the induced polarization is strong [56, 54, 57]. However when
the number of V atoms increases, then the induced polarization strongly decreases
[54, 57]. Besides it was clearly shown that the effect of relaxation is essential to
determine induced magnetic moments [56]. Thus it appears that in order to get a
significant and valuable result, any ab initio calculation must be “non-collinear”
within a cancellation of the forces acting on V atoms. Such calculation did not
appear yet. Besides, when V atoms are in contact with a substrate, total energy
calculation should also take into account a possible exchange between V atoms and
substrate atoms.

4 Chromium Nanostructures

4.1 Introduction

From a historical point of view Overhauser [60] and Lomer [61] explained spin den-
sity waves (SDW) of bcc Cr through nesting mechanism. These SDW are observed
experimentally, but density functional theory (DFT) calculation [62] predicts
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anti-ferromagnetic configuration. This apparent contradiction has been solved by
Uzdin and Demangeat [63] within a Periodic Anderson Model (PAM) (see, for
example, [64]) and confirmed by Vanhoof [65] within a full-potential augmented
plane wave + local orbitals (APW + lo) method as implemented in the WIEN2k
package. The claim is that “the ground state of Cr is really anti-ferromagnetic” and it
is correctly predicted by DFT. However, this ground state is (so far) not yet observed
experimentally, because there are quasi-particle excitations called “nodons” that can
be populated already at very low temperatures. Each nodon corresponds to the intro-
duction of one node (a lattice site with zero moment) in the anti-ferromagnetic Cr
lattice. Such a node does not need to be localized, but can travel through the Cr lat-
tice. These nodons have the following properties: (1) They can easily be created, but
it is difficult to destroy them; once a nodon is created, it is much easier to displace it
than to destroy it. (2) The nodon–nodon interaction is highly anisotropic: attractive
for distances of a few monolayers along the [001] direction, weakly repulsive for
all larger distances along this direction, strongly repulsive for distances smaller than
the nearest-neighbour Cr–Cr distance in all directions perpendicular to [001], and
attractive for all other distances in the latter directions. (3) When two nodons meet,
they completely annihilate each other and locally the AF state is restored. With these
features, the inevitable existence of SDW can be understood: Cr is AF at 0 K and
as soon as the temperature rises above an unknown threshold, thermal fluctuations
may excite a nodon. Once it is there, it is unlikely to be destroyed, and it starts
travelling through the lattice. The number of nodons continuously increases, and
they start to interact with each other. The attractive interaction in the (001) plane
leads to the building of (001) planes of nodes. These planes repel each other along
the [001] direction, and therefore try to maximize their mutual distance along this
direction. Meanwhile, since the creation of nodes keeps going, ever more planes
will be formed and the [001] distance between planes decreases, leading to occa-
sional annihilations when planes come too close together. This evolution ends when
formation and annihilation of planes are in equilibrium. Due to repulsive interac-
tion, the system ends up with a collection of (001) node planes at regular distances
from each other, which is clearly SDW. If temperature rises, the creation of nodes
increases and extra node planes will be formed. These are now more densely packed
so that more annihilations take place, and the net result is less node planes at larger
distances from each other, in dynamic equilibrium with the formation of new nodes.
This agrees with the experimental observation that the SDW period increases with
temperature. In a final step, the nodon model was used in combination with ab initio
calculations to study SDW doped with impurities [65].

Recently Kravtsov et al. [66] discussed the onset of SDW in Cr/V hetero-
structures with different Cr thicknesses by using combined resistivity, neutron and
synchrotron scattering measurements. They demonstrated that SDW behaviour is
strongly affected by Cr Fermi surface nesting, finite size effects and proximity
effects from neighbouring V layers. The magnetism on Cr layers in those Cr/V
hetero-structures depends strongly on thickness of the considered Cr film. It is espe-
cially pointed out that Cr magnetization disappeared when its thickness is less than
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100 Å. Very complex magnetic states are depicted in terms of Cr thickness: no
magnetism for small thickness followed by a paramagnetic state when the thickness
increases. Then commensurate SDW appears before the onset of incommensurate
SDW in thick Cr layers. Effect of V is clearly disturbing, presenting a long-range
nature which causes stabilization of longitudinal out-of-plane SDW.

Up to now we discussed the stability of SDW in Cr. These SDW are only
present when the thickness of Cr slab is thick enough [63]. However, in the
case of nanostructures investigated in the present section, the size is generally
much too small so that SDW cannot develop. For free-standing clusters of 20–
133 atoms at temperature between 60 and 100 K, Payne et al. [67] used a Stern–
Gerlach deflection technique to study magnetism. What is striking is the obser-
vation of two magnetically distinguishable populations never observed in other
transition metals. On the theoretical side, magnetization has been obtained for
clusters with much smaller size so that comparison with experiment is presently
lacking. Ohresser et al. [68] performed XMCD measurements of isolated-like Cr
atoms deposited on Au(111). The magnetic moment, per Cr atom, extracted from
a Brillouin function, is above 4μB in agreement with fully relativistic electronic
structure calculations, using the embedding technique within the KKR method.
Also, Yayon et al. [69] used spin-polarized scanning tunnelling spectroscopy to
observe the spin polarization state of individual Fe and Cr atoms adsorbed onto Co
nanoislands.

It is difficult to discuss about Cr nanostructures without remembering the dis-
covery of the giant magneto-resistance (GMR) by Baibich et al. [70] in Fe/Cr
multilayers. Details on GMR can be found in a review paper by Coehoorn [71].
Baibich et al. [70] performed their experiments for Cr(001)-oriented thin films.
For this orientation Fe/Cr multilayers clearly present two periods of oscillations
(see [30] for details). By means of spin- and angle-resolved photoelectron spec-
troscopy, Dedkov [72] performed spin-resolved electronic structure measurements
of thin Cr overlayers on top of a Fe(110) surface. The initial fast drop of photoelec-
tron spin-polarization at the Fermi level was followed by weak oscillatory behaviour
with a period of about 2 monolayers (ML). In the case of Fe/Cr(001) superlattices,
the theoretical explanation of 2 ML oscillation relies on the anti-ferromagnetic cou-
pling between nearest Fe–Cr and Cr–Cr monolayers. Thus, for a Cr spacer with
an odd number of layers, the magnetic moments of Fe layers on both interfaces
will order parallel and interlayer exchange coupling (IEC) will be ferromagnetic.
If the Cr spacer has now an even number of layers, IEC will therefore be anti-
ferromagnetic. Nothing like that for the (110)-oriented Fe substrate because, for
this geometry, the (110) Cr monolayer has an in-plane anti-ferromagnetic config-
uration leading to a net magnetization of zero. Of course, for a small number of
Cr layers adsorbed on Fe(110), an induced ferromagnetic component should be
present.

In the next section, we will focus on small Cr clusters adsorbed on a sub-
strate. Let us just mention, for completeness, very recent non-collinear calculations
of unsupported Cr(111) monolayers [73] as well as unsupported small planar Cr
clusters [74].
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4.2 Cr Clusters on a Substrate

New phenomena discovered in low-dimensional magnetic structures have attracted
considerable attention, as far as the connection between magnetism and dimension-
ality is concerned. Very interesting from this point of view is the evolution of Cr
magnetic properties with the size of the considered sample. Bulk Cr has complex
magnetic structure, including an incommensurate anti-ferromagnetic SDW. In epi-
taxial films, SDW can be manipulated by the choice of a magnetic cover, an interfa-
cial roughness and a chromium film thickness [75]. For film thickness less than the
SDW period, magnetic structure is determined by the interface region. In Fe/Cr mul-
tilayers with thin Cr spacer, interface defects, such as steps or pinholes, are respon-
sible for non-collinear coupling of Fe magnetic moments through Cr layers [76].
Magnetism of small supported Cr clusters have special interest. They display non-
collinear ordering due to the competition of exchange interactions between different
atoms. The ratio between these interactions can be varied versus the interatomic
distances in cluster by choosing a suitable substrate or by varying the conditions of
the epitaxial growth.

Within STM experiment, Jamneala et al. [77] observed a narrow resonance at the
Fermi level for a compact Cr trimer on Au(111) substrate. This appears to corre-
spond to a sizeable Kondo temperature of about 50 K much larger than the value
of 6 K corresponding to a single Cr impurity on Au(111). Kudasov and Uzdin [34]
were the first to determine the ground state of this Cr trimer supported on a Au(111)
surface by means of a variational approach to the Coqblin–Schrieffer Hamiltonian.
The temperature of Kondo resonance formation for trimers was found much larger
to that of a single Cr adatom in agreement with results of Jamneala et al. [77].
Following the work of Kudasov and Uzdin [34], let us notice interesting results
obtained by Savkin et al. [78], Lazarovits et al. [79] and Aligia [80]. As pointed out
by Aligia [80]: “The origin of this puzzling dependence of the Cr trimer TK with
geometry is still unclear.”

Gotsis et al. [81] carried out first-principles electronic structure calculation to
study the structural, electronic and magnetic properties of monomer, dimer and
trimer Cr clusters on a Au(111) surface. They used the projector augmented wave
(PAW) method as implemented in the VASP code. The most favourable location for
the single Cr adatom is the fcc hollow. The magnetic moment obtained is 3.93μB,
which is a value smaller than that obtained by Ohresser et al. [68] within a fully
relativistic KKR method. The compact dimer orders anti-ferromagnetically with a
moment of 0.005μB. The compact triangular trimer displays non-collinear mag-
netism with angles of 120◦ between the direction of the various magnetic moments.
The effect of spin–orbit is shown to be rather negligible on a local moment of
about 3.16μB.

Later on, Bergman et al. [82], as well as Antal et al. [83], also determined elec-
tronic and magnetic properties of a compact Cr cluster on Au(111). Bergman et
al. [82] considered various geometries for Cr on Au(111): on the surface; in the
surface, and in the sub-surface. Clearly, as a consequence of the increasing numbers
of Au atoms in the neighbourhood of Cr, its moment decreases from 4.31μB, for
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an adatom, to 3.85μB, in the surface and finally to 3.59μB, in the sub-surface. The
result for Cr adatoms is very similar to that obtained by Gotsis et al. [81]. However,
for a Cr dimer the results obtained are totally at odds with those of Gotsis et al.
[81]. This is surely due to the unrelaxed approximation used by Bergman et al.
[82]. These authors also considered the Cr trimer in linear and triangular geome-
tries. For a linear chain, the coupling is found to be anti-ferromagnetic whereas,
for the compact trimer, the coupling of the magnetic moments is non-collinear
with 120◦ between moments of different atoms. Again, it is difficult to compare
with the results of Gotsis et al. because of the absence of relaxation. Also Antal
et al. [83] reported on the magnetic properties of a Cr trimer on Au(111) sur-
face. The Cr atoms are situated at the hollow sites on the top of a fcc Au(111)
surface, i.e. they neglected possible relaxations of the geometry. Stocks et al. [84]
recently reviewed some of their recent work concerning first-principles calculation
of the magnetic structure of surface and bulk nanostructures. Moreover, Bergman
et al. [85] determined the magnetic structures of small clusters of Fe, Mn and
Cr supported on a Cu(111) surface. Different geometries, such as triangles, pyra-
mids and wires, are considered and the cluster sizes have been varied between
two and ten atoms. Kawagoe et al. [86] fabricated high-density self-organized
spiral terraces on Cr(001) films. Imaging of both topological and magnetic struc-
tures was realized at room temperature by spin-polarized scanning tunnelling spec-
troscopy.

4.3 Outlook

In the section concerning V nanostructures, most of the experiences do not point
out spin polarization in their results. On the contrary, for Cr nanostructures, any
experiment or calculation should take into account the inherent magnetization of the
considered Cr nanostructures. The most recent results do take into account, not only
the modulus of Cr magnetization but also its direction. Actually, since the work of
Uzdin et al. [33] on Cr compact trimer on noble metals, more and more calculations
do take into account the fact that a broken symmetry does lead to a non-collinear
ground state. For example, magnetic moment distribution in Cr(001) and Cr(110)
films with strips and random defects at surface have been calculated in the frame-
work of a periodic Anderson model [87]. All Cr(001) films reveal an appreciable
surface magnetic moment, the value of which depends on the type of defect. The
film with flat Cr(110) surface does not exhibit any magnetization because of an equal
number of atoms with opposite moments. Only well-ordered defects, like one or two
atom strips, can give a noticeable magnetization in Cr(110) films. Figure 4 shows
a schematic illustration of the anti-ferromagnetic non-collinear magnetic moment
orientation for a Cr film with two atom strips. The maximal deviation of the surface
moments on the substrate orientation is about 11◦. In all considered cases the energy
of non-collinear configurations is very close to the collinear ones.
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Fig. 4 Schematic illustration of the non-collinear magnetic moments orientation (nearly anti-
ferromagnetic) for a Cr film with two atom strips. The dark spheres indicate the atoms with nearly
opposite orientations of moments (from [87])

5 Manganese Nanostructures

5.1 Introduction

As pointed out by Demangeat and Parlebas [36], manganese nanostructures have
been the subject of a number of investigations because manganese is a unique ele-
ment which exhibits a variety of unusual electronic and magnetic properties depend-
ing on its environment. Knickelbein [88] depicted a super-paramagnetic behaviour
in Mn clusters within Stern–Gerlach experiments. Mejia-Lopez et al. [89] were able
to explain this puzzling size dependence of magnetic properties via an effective
spin Hamiltonian. In this section, first we shall focus on Mn films on substrates
(Sect. 5.2). Also, we say a few words on Mn-based ordered alloys on ferromag-
nets. It seems worthy, after the recent result of Knickelbein [88], to write down a
short paragraph on free-standing Mn clusters (Sect. 5.3). Another paragraph will
be devoted on adsorbed nanoclusters deposited on a substrate (Sect. 5.4). At last,
we shall give some recent spectroscopic results of Mn nanostructures on Ag(001)
(Sect. 5.5). Finally, Sect. 5.6 will be devoted to an outlook upon the considered
subject.

5.2 Thin Mn Films and Mn-Based Films Deposited on Substrates

Following the work of Hafner and Spisak [35] displaying non-collinear magnetism
in a Mn monolayer on Fe(001), renewed interest was devoted, from an experimental
point of view, on Mn films in contact with a strong ferromagnet. Lee et al. [90]
observed an unexpected magnetic structure, with out-of-plane Mn moments per-
pendicular to those of Fe in Fe/Mn multilayers. For Mn on Fe(001) and within
spin-polarized scanning tunnelling spectroscopy, with ring electrodes, Gao et al.
[91] depicted a large reconstruction with a non-collinear spin structure. Besides
Kohlhepp and De Jonge [92] stabilized a metastable expanded fct Mn on Co(001).
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Also Biswas et al. [93] studied the growth and electronic structure of Mn on Al(111)
within photoelectron spectroscopy and low-energy electron diffraction.

Within a full potential linearized augmented plane waves (FLAPW) code, Hong
and Wu [94] determined the magnetic map and the magnetic anisotropy of a
Mn monolayer on Nb(001). Total energy calculations revealed that a ferromag-
netic state instead of c(2 × 2) anti-ferromagnetic state is a preferred state in
Mn/Nb(001). A magnetic moment of 3.23μB was obtained on each Mn surface
atom whereas an induced moment of 0.56μB was found on the sub-surface Nb
atoms. Furthermore, Mn/Nb(001) has an in-plane easy axis because the negative
shape anisotropy overwhelms the small positive magneto-crystalline anisotropy.
Yamada et al. [95] investigated the magnetic structure on thin Mn films grown on
a Fe(001) surface with a mono-atomic step. The spin-polarized scanning tunnelling
microscopy/spectroscopy images display a change in the magnetic contrast when
crossing one of those steps due to the change of Mn thickness. The width of the
domain wall around the substrate steps does not depend on the thickness, at least for
coverages up to seven Mn overlayers. This is due to the weakly defined magnetic
coupling at the central Mn layers that decouple the surface from the interface to
a large extent. These findings are described by parameterized self-consistent real
space tight binding calculation in which the spin quantization axis is site dependent,
thus allowing non-collinear magnetism. Also, Spisak and Hafner [96] reported non-
collinear calculations performed within a VASP-code in a full relativistic mode, for
Mn adlayer on Fe(100) surface. When the constraint of spin collinearity is dropped,
a spin-flop state with a nearly perpendicular direction of Fe and Mn moments was
found.

Besides those Mn thin films on ferromagnets, M’Passi-Mabiala et al. [97] inves-
tigated the ferromagnetic ground state for MnCo surface-ordered alloy on a Co(001)
substrate. Within TB-LMTO-ASA, in a GGA approximation, this ordered alloy is
found more stable as compared to a Mn overlayer on Co(001). Besides a ferro-
magnetic coupling is obtained (Table 7) in agreement with experimental results of
Choi et al. [98]. Later on, Malonda-Boungou et al. [99] determined the magnetic

Table 7 Magnetic moments (in μB) for Mn–Co/Co(001) and difference of total energies per cell
(in mRy) with a GGA–PW approximation. The ground state is indicated by 0 (from [97])

Input Mn ↓ Co ↓ Mn ↑ Co ↓
Mn ↓ Co ↑ Mn ↑ Co ↑

Energy 36 0
Atom Moments Moments

Mn −3.79 3.67
Co5 0.82 1.73
Co4b 1.33 1.59
Co4a 1.33 1.59
Co3b 1.77 1.76
Co3a 1.71 1.73
Co2b 1.71 1.70
Co2a 1.71 1.70
Co1b 1.70 1.70
Co1a 1.71 1.70
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Table 8 Magnetic moments per atom (in μB) and differences of total energy per cell (DTEC)
in mRy/cell for (Mn0.5Ni0.5)2/Co(001). The input magnetic configurations noted “Input” ↑ and ↓
represent the ferromagnetic and anti-ferromagnetic couplings with Co substrate, respectively. The
energy of the ground state is set to 0.0 mRy/cell (from [99])

Input Mn1 ↑Mn2 ↓ Mn1 ↓Mn2 ↑ Mn1 ↑Mn2 ↑ Mn1 ↓Mn2 ↓
DTEC 0.0 17 38 71
Atom
Mn2 −3.69 3.63 3.78 −3.80
Ni2 −0.12 0.12 0.64 −0.63
Mn1 2.90 −3.07 3.01 −3.01
Ni1 0.28 0.09 0.56 −0.32
Co4b 1.62 1.33 1.62 1.28
Co4a 1.55 1.34 1.62 1.38
Co3b 1.75 1.80 1.78 1.78
Co3a 1.71 1.70 1.72 1.69
Co2b 1.78 1.83 1.82 1.82
Co2a 1.83 1.83 1.82 1.83
Co1b 1.78 1.81 1.81 1.80
Co1a 1.76 1.78 1.77 1.77

map of Ni–Mn thin films on Co(001) and Co(111). For the Ni0.5Mn0.5 ordered
alloy, one layer thick on Co(001), couplings are ferromagnetic between Mn and
Ni, as well as for Mn and Ni, with the Co substrate. For the Ni0.5Mn0.5 ordered
alloy, two layers thick, the surface is polarized ferromagnetically, but is coupled
anti-ferromagnetically with the sub-surface and the Co atoms (Table 8). The mean
magnetic moment of Mn versus the thickness of the surface-ordered alloy oscil-
lates (Fig. 5) whereas the mean magnetic moment of Ni remains always small.
Investigation of Ni–Mn monolayer on Co(111) versus Mn concentration displays
a ferromagnetic polarization between Mn and Ni for small concentrations of Mn
whereas an anti-ferromagnetic polarization between Mn atoms is present for high
Mn concentrations.

Fig. 5 Mean magnetic
moment per atom (in μB) for
(Ni0.5Mn0.5)n monolayers on
Co(001), “n” is the thickness
of MnNi over-layers, for Ni
and Mn atoms as a function
of the Mn–Ni thickness. Line
with circles (triangles)
represent the mean magnetic
moment for Mn (Ni) atoms
(from [99])
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Since the work of Andrieu et al. [100], another point of current interest is the
effect of oxygen contamination on the properties of Mn nanostructures deposited
on a strong ferromagnet. Andrieu et al. [100] considered the effect of oxygen con-
tamination on the magnetic properties of Mn grown on Fe(100) with a variable
coverage between 0.1 and 1 ML and for different coverage rates of oxygen. Just
after the sample preparation, a strong XMCD signal is found indicating sizeable
magnetic moments on Mn atoms which are coupled ferromagnetically to the Fe
ones. At this stage, the X-ray photoelectron spectroscopy (XPS) signal indicated
low O contamination. The XMCD signal, 15 h later, has undergone a significant
change due to a complete covering of the Mn layer by oxygen. Also, Yonamoto
et al. [101] saw this oxygen-induced reversal of magnetic moments for Mn on
Co(001). The effect of oxygen on the magnetic coupling between Mn on Fe(001)
substrate and between Mn on Co substrate was determined, respectively, by Zenia
et al. [102] and Pick and Demangeat [103]. Zenia et al. [102] performed ab initio
density functional calculations on a Mn monolayer deposited on Fe(001) to which
a top layer of oxygen is added. They used the SIESTA (Spanish Initiative for Elec-
tronic Structure of Thousands of Atoms) code developed by Soler et al. [104]. A
clean Mn surface is found to be in a c(2 × 2) in-plane anti-ferromagnetic order with
moments of 3.98μB and –4.39 μB on both inequivalents atoms, the sub-surface Fe
moments being smaller than in the bulk case. Two metastable solutions with fer-
romagnetic polarization between Mn and Fe (p(1 × 1) ↑) and anti-ferromagnetic

Fig. 6 Relative stability of
three magnetic arrangements
at Mn atoms in clean
Mn/Fe(100) (a) and
O/Mn/Fe(001) (b) systems.
All the atoms are fixed to
their ideal bcc positions
(from [102])
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polarization between Mn and Fe (p(1 × 1) ↓) are found some 100 meV above
the ground state. The addition of oxygen modifies drastically the stability of the
three solutions obtained without oxygen. Now the p(1 × 1) ↓ solution is the ground
state (Fig. 6).

5.3 Non-collinear Free-Standing Mn Clusters

Soon after the Stern–Gerlach experiment of Knickelbein [88], displaying magneti-
zation in Mn clusters, first-principle studies were performed on small Mn clusters.
In the Stern–Gerlach experiment, the clusters in a beam passed through a gradi-
ent magnetic field that tries to orient the moments, as well as to deflect them.
For Fe, Co or Ni clusters, the beam undergoes a net deflection upon applica-
tion of the gradient fields. For Mn, however, the observed deflection profiles do
not exhibit any net deflection but simply broaden with increasing gradient field.
The absence of a net deflection could be accounted by a weak ferromagnetism or
anti-ferromagnetic coupling or better a non-collinear arrangement. Within a pro-
jector augmented wave (PAW) formalism implanted in the Vienna Ab initio Sim-
ulation Package (VASP) code, Morisato et al. [105] performed an unconstrained
magnetization of Mn clusters with five and six atoms. They showed that while the
ground state of a Mn5 cluster had a collinear arrangement of spins, a Mn6 cluster
was the smallest to exhibit a non-collinear ground state.

Just after the publication of the paper by Morisato et al. [105] and using a fully
unconstrained magnetization option of SIESTA [104], as well as non local norm-
conserving pseudo-potentials and a local spin density approximation (LSDA) for
exchange and correlation, Longo et al. [106] performed DFT calculations of the
structures, binding energies and magnetic moments of Mnn clusters (n = 2–7).
They found that, for n = 2 the ferromagnetic solution is the ground state, and that
for n = 3, 4, ferromagnetic and anti-ferromagnetic configurations are equiprobable.
For n = 5, 6 and 7, there is a clear preference for anti-ferromagnetic ordering. How-
ever, for n = 3–7, they also found non-collinear solutions the total energies of which
are more negative than those obtained for collinear constrained magnetization. This
is clearly at odds with the result of Morisato et al. [105] displaying non-collinear
ground state only for n greater than 5. No serious explanation was given concerning
this very serious discrepancy. Morisato et al. [105], as well as Longo et al. [106],
performed their ab initio calculation only for a small number of Mn atoms in the
cluster. Therefore they do not give any explanation of the magnetic site dependence
reported by Knickelbein et al. [88]. To make some link between calculations and
experiment, Xie and Blackman [107] performed some semi-empirical non-collinear
tight-binding calculation for Mn clusters containing more than 10 Mn atoms. Also,
within the SIESTA-code, Mejia-Lopez et al. [89] did ab initio non-collinear cal-
culations for Mn-clusters with less than nine atoms. For clusters with more Mn
atoms they used an effective spin Hamiltonian. Within a gradient corrected DFT
approach, Kabir et al. [108] performed a systematic investigation of electronic
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structure and emergence of non-collinear magnetism of pure Mnn clusters and Mnn
clusters doped with As. The ground state for n < 6 is collinear and emergence of
non-collinear ground states is seen for n > 5. This result is at odds with those of
Longo et al. [106] who obtained non-collinear ground states as soon as the number
of Mn atoms are greater than two.

5.4 Mn Chains and Compact Clusters on Substrates

Inelastic scanning tunnelling spectroscopy with STM was used by Hirjibehedin
et al. [109] to obtain a direct probe of magnetic interactions between manganese
atoms building linear chains. These chains, ranging from 1 to 10 atoms, were
assembled by atomic manipulation on one monolayer high insulating islands of
CuN deposited on Cu(001). Comparing the spin excitation spectra with magnetic
properties predicted by an Heisenberg Hamiltonian, restricted to Mn–Mn nearest-
neighbour exchange interactions, they obtained the strength of magnetic coupling J
between individual spins per Mn. They showed that this coupling is strongly depen-
dent on the deposition sites of the Mn chains: the value of the J factor goes from
one to two when depositing Mn on top of N or on top of Cu. Barral et al. [110] per-
formed WIEN2k calculations for different arrangements of Mn chains deposited on
CuN/Cu(001). The results of Barral et al. [110] suggested that for a given configu-
ration the interaction was of super exchange type through N–Mn molecular orbitals,
while for another one, it was given by a combination of super exchange and indirect
type interactions through Cu substrate. Costa et al. [111] showed that the proximity
of two magnetic adatoms attached to the walls of carbon nanotubes may induce
the formation of non-collinear alignment of their magnetizations. This effect is the
result of a competition between direct and indirect contributions to exchange cou-
plings which become comparable when magnetic adatoms are not too far apart from
each other. Moreover, the ability to control the indirect exchange coupling through
a careful selection of the Fermi energy of nanotubes opens the road to the possi-
bility of controlling the magnetization of nanotube-based systems with magnetic
dimers.

5.5 Spectroscopic Properties of Mn Nanostructures on Ag(001)

The study of magnetically stabilized surfaces has attracted much experimental and
theoretical interest over the past decade because of its great importance in under-
standing the interfacial magnetism for this type of system in addition to its relevance
as far as magneto-resistive devices are concerned. For the study of spontaneous two-
dimensional itinerant magnetism, the well-known prototype system is a 3d transition
metal monolayer (ML) adsorbed on a non-magnetic substrate.

Extending a previous study [112] and using a realistic impurity model that
includes full atomic multiplet interaction as well as coupling to Mn 3d and Ag
4d bands, Taguchi et al. [113] performed a variety of calculations, i.e. core level
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Fig. 7 Calculated 2p core
level photoemission spectra
for various Mn–Ag
structures, along with
experimental spectra from
[114] (Mn impurity in Ag)
and Schieffer et al. [115] (all
others). The short dashed line
represents the calculated
background spectra. The
labels M and S indicate the
main peak and satellite,
respectively (from [113]).

X-ray photoemission (c-XPS), X-ray absorption (XAS) and resonant X-ray emis-
sion (RXES) spectra at Mn L23 edge in Mn thin films on Ag(001) and related
structures, namely an adsorbed Mn monolayer (ML) on Ag(001) [i.e. Mn/Ag(001)],
a “buried” one [i.e. Ag/Mn/Ag(001)], an adsorbed bilayer Mn/Mn/Ag(001), a free-
standing Mn ML, bulk body-centred-tetragonal (bct) Mn, a Mn impurity in Ag and
a single Mn atom on Ag(001). The calculated 2p photoemission spectra (Fig. 7)
well reproduce the experimental ones in the whole range of structures from Mn
impurities in Ag and to bulk bct Mn [114, 115]. For comparison, the considered
authors also calculated the spectra of a free Mn ML and that of a single Mn atom
on Ag. Taguchi et al. [113] also calculated Mn 2p XAS with the same parame-
ter values as those of 2p XPS. The results are shown in Fig. 8. The experimen-
tal spectrum is also shown by closed symbols, only for a Mn/Ag system, from
[116]. The calculated result for Mn/Ag is in good agreement with the experi-
ment. All systems have very similar spectral shape. This is because the charge
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Fig. 8 Calculated 2p core
level photo-absorption
spectra for various Mn–Ag
structures. The closed symbol
represents the experimental
2p absorption spectra from
[116]. The photon energies of
the resonant X-ray emission
spectra are marked by
vertical arrows (from [113])

transfer effect is suppressed due to the screening of the core hole potential by 3d
electrons.

Finally, Taguchi et al. [113] considered the resonant X-ray emission spectra with
L3 and L2 excitation peaks. For simplicity, they neglected polarization effect of
incident photons. The calculated results at L3 and L2 excitations are shown in the
left and right panels of Fig. 9, respectively. At L3 excitation, the elastic peak has a
strong intensity for all systems and the spectral shape does not change very much.
This is for the same reason as that for the case of 2p XAS (i.e. the ordering of
the states does not change). For the RXES spectra with L2 excitation (about 12 eV
above L3 edge), the intensity of the inelastic peak increases and is larger than that of
the elastic peaks for all systems. Moreover, while the 2p XAS spectra at L2 region
does not change very much, Fig. 9 clearly shows that the RXES spectral shapes
with L2 excitation strongly depend on the system under consideration. Also, the
calculated RXES spectra present satellite structures which are very sensitive to the
hybridization strength.

Later on and still using an impurity model which includes full multiplet interac-
tion and coupling to the Mn 3d and Ag 4d bands, Taguchi et al. [117] reported a
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Fig. 9 Calculated
2p→3d→2p resonant X-ray
emission at the photon
energies marked by vertical
arrows in the L23 spectrum of
Fig. 8. Left part: calculated
RXES results for L3

excitation. Right part:
calculated RXES results for
L2 excitation (from [113])

RXES study in the whole energy range of Mn L23 white lines for three prototypical
Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on
Ag and (iii) a thick Mn film. The considered model allowed to investigate the inter-
play between on-site dd excitations and charge transfer screening from neighbouring
Mn and Ag atoms. For illustration, we plot here the calculated RXES spectra for
a Mn monolayer on Ag (Fig. 10). The most simple interpretation of these spectra
would be to superimpose charge transfer satellites originating from 3d 6 (Mn+) onto
the impurity spectra with some weighting factor. This approach neglects, however,
configuration mixing in the final state, which strongly modifies the spectral shape,
especially the relative peak intensities. From a general point of view, the calcu-
lated RXES spectra depend strongly on the excitation energy. At L3 excitation,
the spectra of all three systems are dominated by the elastic peak. For excitation
energies around L2, and between L3 and L2, however, most of the spectral weight
comes from inelastic X-ray scattering. The line shape of these inelastic satellite
structures changes considerably between the three considered Mn/Ag systems, a
fact that may be attributed to changes in the bonding nature of the Mn d orbitals.
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Fig. 10 (a) Absorption
spectrum in the Mn L23
region with indication of the
excitation energies used in the
RXES calculation. X stands
for Mn+ and Ag. All RXES
spectra have been rescaled to
the same amplitude. (b)
Calculated RXES spectra for
a Mn monolayer on Ag (from
[117])

The system dependence of the RXES spectrum is thus found to be much stronger
than that of the corresponding absorption spectrum. Taguchi et al.’s results [117]
suggest that RXES in the Mn L23 region may be used as a sensitive probe of the
local environment of Mn atoms.

5.6 Outlook

Nanomagnets frequently lack inversion symmetry because of the presence of sur-
faces so that, owing to the presence of spin–orbit interaction which connects the
lattice with spin symmetry, this broken parity of the lattice gives rise to an addi-
tional interaction. This is the Dzyaloshinskii–Moriya interaction (DMI) described
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by Dzyaloshinskii [118] and Moriya [119]. Bode et al. [120] reported the occurrence
of homo-chiral spin structures in a single atomic layer of Mn on W(110) substrate
arising from the DMI and leading to a left rotating spin cycloid. More precisely
chirality in nanoscale magnets may play a crucial role in spintronic devices. For
instance, a spin-polarized current flowing through chiral magnetic structures will
exert a spin-torque on the magnetic structure causing a variety of excitations or
manipulations of the magnetization and giving rise to microwave emission, magne-
tization switching or magnetic motors [120].

6 Concluding Remarks

In this short lecture note we reported recent results concerning the electronic, mag-
netic and spectroscopic properties of V, Cr and Mn nanostructures. A great major-
ity of present theoretical results were obtained at T = 0 K and in static condi-
tions. However, life is not so simple because most of the experimental results were
obtained at non-zero temperature and spin dynamics cannot be excluded [39]. If the
temperature is raised, the magnetic moment will decrease due to additional thermal
disorder among the spins [121]. The ultimate limits of such dynamic process are
achieved if the perturbation of the system is rapid enough to drive its internal degrees
of freedom (spins as well as electronic and nuclear motion) out of equilibrium.
Exploring these limits not only provides insights in elementary mechanisms govern-
ing spin dynamics but also contributes to development of novel ultrafast switching
strategies for future magnetic memory devices [122].

In fact, the rapidly increasing information density required from magnetic data
storage devices raises the question of fundamental limits in bit size and writing
speed. Stamm et al. [123] used X-ray magnetic circular dichroism in ultrafast mode
to obtain insight into spin relaxation in nickel on a femtosecond timescale, opening
new horizons for research into spin dynamics with the highest resolution. Femtosec-
ond laser pulses are the key to exploring non-equilibrium magnetism. Exciting a
ferromagnetic thin film with such a pulse heats up the conduction electrons almost
instantaneously, but it takes a finite time for the nuclear lattice and spin degree
of freedom to adapt [122]. Since the pioneering work by Beaurepaire et al. [124]
the underlying microscopic mechanisms have been heavily discussed. The debate
led to the realization that XMCD, when performed with femtosecond X-ray pulses,
provides a direct and well-defined view on spin dynamics [123].

Calculations of the magnetic properties of thin films were investigated by Jensen
and Bennemann [121] as functions of temperature and atomic morphology. Special
attention was paid to determine the influence of collective magnetic excitations and
non-collinear magnetic structures at finite temperatures. Those points were studied
within a Heisenberg model by application of a mean-field approximation as well
as by a many-body Green’s function theory. Also Buruzs et al. [125] performed ab
initio calculations of the temperature-dependent magnetic anisotropy energy (MAE)
of magnetic surfaces, interfaces or films by using an extension of the relativis-
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tic disordered local moments (RDLM) scheme to layered systems. The RDLM
method was implemented within the relativistic screened KKR code for layered
systems and applied to the study of temperature dependence of MAE of ferromag-
netic Co films on Cu(001). Their results are in overall agreement with experiment,
as far as it is found that the magnetization is oriented parallel to the surface for
almost all temperatures below the Curie temperature, except for the two-monolayer
system.

Let us conclude with the results displayed by Sipr et al. [126] about the influence
of temperature on the systematics of magnetic moments of free Fe clusters. The
focus of these authors is on free spherical Fe clusters with less than 100 atoms.
As usual the interaction among individual magnetic moments is described by a
classical Heisenberg Hamiltonian, with exchange coupling constants provided by
spin-polarized relativistic KKR calculations [127]. The average magnetic moment
for a given temperature is evaluated by a Monte Carlo method (see [128]). It is found
that up to room temperature this average magnetic moment does not depend signif-
icantly on T . This implies that ground-state calculation should be able to reproduce
the currently available experimental data. Thus the disagreement of current calcula-
tion with experiment should not be ascribed to the influence of finite temperature. In
fact these discrepancies may come from the fact that experimental values have not
been obtained directly, but inferred from measured deflections in a Stern–Gerlach
magnet [126]. The magnetic moments can be derived from the experiment only after
several assumptions about super-paramagnetic behaviour, single domain magnetiza-
tion and spin relaxation.
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Bulou for his valuable technical help in preparing this chapter.

References

1. J. Kondo, Prog. Theor. Phys. 32, 37 (1964). 162
2. P. Curie, CRAS 115, 805 (1892). 162
3. P. Langevin, CRAS 139, 1204 (1904). 162
4. P. Weiss, CRAS 143, 1136 (1906). 162
5. P. Weiss, CRAS 152, 187 (1911). 162
6. P. A. M. Dirac, Proc. Roy. Soc. A 117, 610 (1928). 162
7. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956). 162
8. K. Yoshida, Phys. Rev. 106, 893 (1957). 162
9. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 162

10. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963). 162
11. R. Haydock, Solid State Physics, vol. 35, (Academic Press, New York, 1980). 162, 172
12. C. Lanczos, J. Rest. Natl. Bur. Stand. 45, 255 (1950). 162
13. P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964). 162



Properties of Vanadium, Chromium and Manganese Nanostructures 193

14. W. Kohn and L. Sham, Phys. Rev. 140, A113 (1965). 162
15. A. Gross, Theoretical Surface Science (Springer-Verlag, 2003). 163
16. S. Frota-Pessoa, Phys. Rev. B 46, 14750 (1992). 163, 172
17. A. B. Klautau and S. Frota-Pessoa, Surf. Sci. 579, 27 (2005). 163
18. K. Wildberger, R. Zeller, and P. H. Dederichs, Phys. Rev. B 55, 10074 (1997). 163
19. J. C. Parlebas, K. Asakura, A. Fujiwara, I. Harada, and A. Kotani, Phy. Rep. 431, 1

(2006). 163
20. H. Dreysse and C. Demangeat, Surf. Sci. Rep. 28, 65 (1997). 163, 164, 170
21. J. Bansmann, S. H. Baker, C. Binns, J. A. Blackman, J.-P. Bucher, J. Dorantes-Davila,

V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwes-Broer, G. M. Pastor, A. Perez,
O. Toulemonde, K. N. Trohidou, J. Tuaillon and Y. Xie, Surf. Sci. Rep. 56, 189 (2005). 163

22. J. Honolka, K. Kuhnke, L. Vitali, A. Enders, K. Kern, S. Gardonio, C. Carbone, S. R. Krish-
nakumar, P. Bencok, S. Stepanow, and P. Gambardella, Phys. Rev. B 76, 144412 (2007). 163, 164

23. A. De Siervo, E. De Biasi, F. Garcia, R. Landers, M. D. Martins, and W. A. A. Macedo, Phys.
Rev. B 76, 075432 (2007). 163

24. J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. B 75, 184421
(2007). 164
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Electronic Structure and Magnetism of Double
Perovskite Systems

D. Stoeffler

Abstract Double perovskite systems (like Sr2 X MoO6 (X Fe, Co)) presenting
an half-metallic behavior have been recently extensively experimentally and theo-
retically studied in relation with their potential use as magnetic electrode in spin-
tronic devices. The half-metallic property has first been theoretically predicted for
Sr2 FeMoO6 with the LSDA but this method does not provide satisfactory results
when Fe antisites are considered. This is related to the high sensitivity of the gap
into the majority band, being at the origin of the half-metallic property, to structural
variations or to imperfections. The aim of the present work is to investigate how the
enhancement of this gap affects the electronic structure and the magnetic properties
of such kind of double perovskite system.

Using the full potential linearized augmented plane wave ab initio method, we
investigate first these bulk double perovskites by comparing the results obtained
with the GGA and GGA+U methods in order to discuss their magnetic configuration
in relation with the experiments. We show that both methods lead to significantly
different results and that a good agreement with experimental results – antiferromag-
netic insulator for X Co – can be obtained only when the GGA+U method is used.
For X Fe, we exhibit the role played by oxygen vacancies on the stabilization of
a negative magnetic moment on the Fe antisite with preserved half-metallicity. We
show that such a negative moment can be obtained only when an oxygen vacancy
occurs in the direct neighborhood of the Fe antisite with the GGA+U method.

We investigate also the electronic structure of Sr2 FeMoO6/SrT i O3 (SFMO/
STO) multilayers. We examine more especially the role of the interface on the
magnetic and transport properties of these multilayers taking into account a pos-
sible Fe deficiency at the interface. We show that bulk behavior is rapidly recovered
due to the strong localization of the interfacial perturbation. For perfect interfaces,
the whole structure is found half-metallic within the GGA+U method; the situation
being ambiguous within the GGA method where SFMO is at the limit of being half-
metallic depending on the structural deformation induced by the STO layer. This
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leads us to the conclusion that such a system could be used as injection electrode
and tunnel barrier in magnetic tunnel junctions with a fully spin polarized injected
current. For Fe-deficient interfaces, we show that the interfacial densities of states
are nearly unpolarized suggesting that this kind of imperfection has potentially a
strong impact on the properties of the multilayers.

1 Introduction

The observation at room temperature of a large magnetoresistance in magnetic tun-
nel junctions [1] gave rise to an increase of the interest for these systems mainly
due to their potential applications such as read heads, recording media, magnetic
memories, or field sensors [2]. In most of these junctions, the magnetic electrodes
are based on CoFe alloys but their spin polarization does not exceed 50% and
leads therefore to a limited magnetoresistive signal. Many works focused on the
increase of the sensitivity of these systems by investigating alternative materials
that could be used as tunnel barrier [3] or magnetic electrode [4]. Another direc-
tion of investigation consists in replacing the metallic electrodes by magnetic oxide
ones having a high magnetic polarization. Sr2 FeMoO6 (SFMO) double perovskites
are expected to be good candidates as magnetic electrode materials for such appli-
cations because they present a half-metallic character (a 100% theoretical polar-
ization) and a high transition temperature TC = 415K. This suggests a potential
large polarization of the conduction electrons at room temperature [5], in contrast
with earlier studied manganite compounds for which TC is generally smaller than
350 K [6].

In the perfect crystalline structure of SFMO, Fe and Mo atoms are arranged
on two equivalent body-centered tetragonal sublattices (within the I 4/mmm space
group with the lattice parameters a = 5.58 Å and c = 7.90 Å, found experi-
mentally by X-ray diffraction [7]) and are connected through oxygen octahedra.
Assuming double exchange mechanism for the interaction, the Fe3+(S = 5/2)
and Mo5+(S = 1/2) magnetic moments are antiferromagnetically coupled leading
to a theoretical magnetization value of 4 μB per formula unit. In this compound
Kobayashi et al. [5] succeeded to measure a reasonable high magnetoresistance
of 42% at low temperature (5 K), originating from the electron transport through
oxygen-rich grain boundaries, and a saturation magnetization of 3 μB per formula
unit. Such a low saturation magnetization was found as well by almost all authors
and was ascribed mainly to the disorder between Fe and Mo cations. Indeed, due to
the supposed antiferromagnetic interaction of double exchange type between the
Fe and Mo sublattices of perfect SFMO, the magnetic moment of Fe antisites,
i.e., for Fe cations situated on Mo (Fe) sites should find itself in an antiparallel
configuration with the magnetic moment of Fe cations on the regular sites, thus
reducing the saturation magnetization [8]. This model of magnetization reduction
is supported by Monte Carlo calculations which indicate an antiparallel alignment
between two Fe cations separated by an oxygen atom [9]. More recently, the mag-
netization reduction has been associated with the reduction of the magnetic moment
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of Fe and Mo when the environment of these atoms is altered. This model is in
agreement with ab initio Linear Muffin-Tin Orbital with Atomic Sphere Approx-
imation (LMTO-ASA) calculations which indicate that the Fe O Fe moments
have a parallel orientation which cannot reduce the total magnetic moment [10, 11].
Nevertheless, this magnetization reduction was never calculated for both types of
imperfections (oxygen vacancies and antisite defect), and the band structure was
reported only for SFMO with a perfect structure or with antisite defects [10–12].
In this last case the half-metallic character of the compound was reported to dis-
appear. This leads to the conclusion that antisite defects have to be avoided in
order to preserve the half-metallic properties and to recover the high-saturation
magnetization.

Recently, Sr2CoMoO6 (SCMO) double perovskites, the Co analogous to SFMO,
have been synthesized using a soft chemistry method and have been characterized by
neutron powder diffraction [13]. At room temperature, the crystal structure is found
tetragonal (space group I 4/m) with a = 5.565 Å and c = 7.948 Å and contains
alternating CoO6 and MoO6 octahedra tilted by 7o in the basal ab plane (Fig. 1).
The stoichiometric samples are found antiferromagnetic (TN = 37 K) and insulating.
The reduction of these samples, leading to oxygen-deficient perovskites with the
same crystal structure, gives rise to ferromagnetic domains (TC = 350–370 K) and
to a dramatic increase of the conductivity related to a large component of itiner-
ancy for down-spin Mo t2g electrons. We will see that a good qualitative agreement
between calculated and measured properties requires to introduce the Generalized
Gradient Approximation with a Hubbard-like contribution (GGA+U) method. The
comparison of calculated features obtained with the GGA and the GGA+U methods
will then be one of our goals.

Fig. 1 Schematic representations of the Sr2CoMoO6 unit cell displaying tilted octahedra : (left)
3D view of the cell containing four formula units and (right) top view of the cell containing two
formula units. The white (respectively gray) spheres correspond to Sr (respectively 0) atoms and
the light (respectively dark) gray octahedra are centered on Co (respectively Mo) atoms
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The present study of the SFMO system analyzes the importance of the oxygen
vacancies and antisite defects perturbation from the point of view of the mag-
netization reduction and of the half-metallic character. We show clearly that the
half-metallic character is preserved for structures containing nearly isolated oxygen
vacancies, while it vanishes when antisite defects are present. Most interesting, the
magnetization reduction is four times larger per oxygen vacancies (2 μB/vacancy)
than per antisite defect, in contrast with the common suggestion that a close satu-
ration magnetization to 4 μB per formula unit is needed in order to preserve good
transport properties of SFMO. We examine also the stability of solutions with an
anti-aligned magnetic moment on the Fe antisite and show that the solutions with
all Fe magnetic moments parallel are always the most stable when a single antisite
is considered. We exhibit the role played by oxygen vacancies on the stabilization
of a negative magnetic moment on the Fe antisite with preserved half-metallicity.
We show that such a negative moment can be obtained only when an oxygen
vacancy occurs in the direct neighborhood of the Fe antisite with the GGA+U
method.

Epitaxial SFMO thin films have been deposited on SrT i O3 (STO) substrates
and it has been shown that they present structural and magnetic properties sim-
ilar to the bulk material [7, 14–18] confirming its potential. In order to investi-
gate the polarized current outcoming from such SFMO electrodes, magnetic tun-
nel junctions using an ultrathin STO film as tunnel barrier between SFMO and
Co thin layers have been grown [19]. In SFMO/STO/Co junctions, a clear positive
magnetoresistive signal of 50% is obtained at low temperature yielding a negative
spin polarization value of 85% for SFMO. This result shows that the SFMO/STO
interface preserves a high polarization of the supposed half-metallic SFMO elec-
trode. However, it is not clear if there is a lowering of the spin polarization due to
the interface with the STO layer or if bulk SFMO has intrinsically this 85% spin
polarization.

Experimentally, several studies were focused on Sr2 FeMoO6/SrT i O3 (SFMO/
STO) magnetic tunnel junction but the expected magnetoresistance was not obtained
even for well-prepared samples [20]. Most of these studies were unable to explain
clearly this disappointing result. A depolarization of the current at the interface was
finally supposed to be the most reasonable explanation. Recently, by combining
X-ray magnetic circular dichroism and X-ray photoemission spectroscopy, it has
been shown that the surface magnetic moment of SFMO is anomalously weak and
is consistent with a lack of Fe at the surface [20]. The absence of magnetoresistance
is consequently ascribed to Fe-deficient surfaces and interfaces of the SFMO layer
where Fe atoms are replaced by Mo atoms and the polarization is strongly reduced
over a significant SFMO thickness.

The present work also investigates the electronic structure and the magnetic prop-
erties of SFMO/STO superlattices taking into account such interfacial Fe deficiency.
The aim is to examine the occurrence of such an interfacial spin polarization low-
ering using a first-principle method for determining the electronic structure tak-
ing electronic correlation into account in the density functionnal theory within the
GGA+U approach (GGA including the semi-empirical Hubbard contribution).
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2 Methodology

The band structure for the considered systems is calculated with the full potential
augmented plane wave formalism (FLAPW) in the FLEUR implementation [21]
taking core, semi-core, and valence states into account. This method is largely
described in the literature and has been chosen for the present study because hyper-
fine fields can be obtained in correlation with nuclear magnetic resonance and
Moessbauer measurements [7].

Fig. 2 Densities of states (DOS) for Sr2 FeMoO6 in the experimental unit cell obtained with
various expressions for the exchange correlation contribution taking (thick line) or not (thin line)
gradient corrections into account. The vertical gray line corresponds to the Fermi level (EF ) and
n(+) (n(−)) corresponds the up-spin (respectively, down-spin) DOS
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Using the local density approximation (LDA) with the Van Barth–Hedin (VBH)
[22] or the Perdrew–Zhang (PZ) [23] expression for the exchange and correlation
term, SFMO is not found half metallic for the bulk I 4/mmm experimental structure
(Fig. 2), the band gap ranging from 0.13 to 0.52 eV. The overestimation of the metal-
lic character by LDA approaches is a well-known problem which can be solved
nicely by taking exciton states into account [24] or by correcting the electron–
electron interaction terms in a semi-empirical way like in the LDA+U approach,
[25, 26]. Within the GGA, the Fermi level is found to fall into the band gap of the
majority spin density of states (DOS) (Fig. 2) whatever the Perdrew–Whang (PW91)
[27] or the Perdrew–Burke–Ernzerhof (PBE) [28] expression is used, the band gap
ranging from −0.08 to 0.60 eV. The GGA is consequently more satisfactory because
it solves slightly the problem of the overestimation of the metallic character and will
be used as reference in all this work.

More generally, in such oxide systems, the band gap is usually found too small
with the GGA method. In this work, the GGA+U method is used in order to get a
band structure which is expected to be more correct. Even if values of U for Fe and
Co are approximately known, it is essential to check that the result is not sensitive to
small variations of this parameter. Moreover, as we will discuss later, the GGA+U
method will also be used in order to play with the band gaps and even introducing
metallic to half metallic or to insulating character transitions.

3 Bulk SCMO and SFMO

3.1 Bulk SCMO

In order to examine the stability of the experimental structure, we should relax the
cell parameters (a, c) and the internal degrees of freedom like the z1 position of
the oxygen atom (O1) linking Co and Mo into the c direction and the position
(x2, y2) of the O atom (O2) in the basal plane (see Table 1). However, with the
used method, such a calculation requires too much computer time. Nevertheless,
aiming to investigate the role of the tilted octahedra, we have done a partial relax-
ation varying only a and c into the I 4/mmm symmetry (where z1 = x2 = y2 =
1/4). The comparison between this relaxed I 4/mmm structure and the experimental
one will give us strong indications about the role of the tilting (mainly because the
experimental structure will finally be the most stable one).

Table 1 Internal atomic position for all inequivalent sites for the two considered structures

(I 4/mmm)/(I 4/m) site x y z

Sr 4d 0/0 0.5/0.5 0.25/0.25
Co 2a 0/0 0/0 0/0
Mo 2b 0/0 0/0 0.5/0.5
O1 4e 0/0 0/0 0.2500/0.2589
O2 8h 0.2500/0.2895 0.2500/0.2296 0/0



Electronic Structure and Magnetism of Double Perovskite Systems 203

3.1.1 SCMO in a I4/mmm Structure

We have determined the values of a and c minimizing the total energy by interpo-
lating the values calculated for a set of (a, c) points on a grid. The energy miminum
is obtained for a = 5.61 Å and c = 7.93 Å. It is not surprising to find a slightly
larger ab basal plane parameter than the experimental value because the octahedra
tilting affects more especially in-plane Co–O–Mo bonds and leads to a reduction of
the Co–Mo distance.

The densities of states (DOS) for the ferromagnetic (FM) solution within GGA,
displayed in Fig. 3, are very similar to the ones obtained for SFMO [29] : the spin-up
DOS exhibits a gap (ranging from –0.1 to 0.7 eV) around the Fermi level (EF ) sepa-
rating mainly Co occupied states from mainly Mo t2g unoccupied states, whereas the
down-spin DOS shows a metallic behavior. As a consequence of this half-metallic
character, the total moment is equal to 3 μB per formula unit (f.u.). For the antifer-
romagnetic (AFM) solution, built by considering a unit cell containing 2 f.u. with
opposite magnetic moments on the two Co sites (the up- and down-spin DOS are
identical), we found finite DOS at EF indicating metallic behavior. However, the
FM solution is found to be the most stable by 117 meV per 2 f.u. cell. Consequently,
the SCMO is found half metallic and ferromagnetically ordered for this I 4/mmm
structure with the GGA method.

As we will see later, the energy difference between antiferromagnetic (AFM)
and ferromagnetic (FM) solutions (ΔE AF M−F M = E AF M − EF M ) is found small (a
few meV/cell) when the GGA+U method is used; that can make the choice of the
Hubbard parameter U and the Hund’s-rule exchange parameter J of the Hubbard
Hamiltonian very questionable. In the literature, usual values for Co are UCo = 5 eV
and JCo = 0.89 eV which makes UCo particularly large as compared to the resulting
total energy difference. In order to investigate the role of these two parameters, we
have varied U and J over a reasonable range of values (see Table 2) and found very
smooth variations of ΔE AF M−F M (its absolute value increases even when U and
J are reduced) without change of sign. This is a clear indication of the reliability
of these calculations and we will use UCo = 5 eV and JCo = 0.89 eV for all other
GGA+U calculations in this work [30].

With the GGA+U method and for the FM solution, giving also a total moment
of 3 μB/f.u., both spin DOS (Fig. 3) present a gap around EF : the gap into the
down-spin DOS coming from the splitting of the Fe and Mo states (the Fe states are
shifted toward lower energy, whereas the Mo ones are shifted toward higher energy).
This illustrates the major contribution of the GGA+U method: it shifts occupied
states to lower energy and unoccupied states to higher energy resulting usually in
the occurrence of new gaps or the enlargement of gaps around EF . A similar result
is obtained for the AFM solution presenting a small gap (from –0.11 to 0.11 eV).
However, contrary to the results of the GGA method, the AFM solution is found
to be more stable by 20 meV/cell than the FM one. Consequently, the SCMO is
found insulating and antiferromagnetically ordered for the I 4/mmm structure with
the GGA+U method, this result being clearly more satisfactory when compared to
the experiments.
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Fig. 3 Densities of states (DOS) for Sr2CoMoO6 in the I 4/mmm unit cell obtained by minimiza-
tion of the total energy for ferromagnetic (FM) and antiferromagnetic (AFM) solutions using the
GGA (left) and the GGA+U (right) method. The vertical gray line corresponds to the Fermi level
(EF ) and n(+) (n(−)) corresponds the up-spin (respectively, down-spin) DOS
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Table 2 Energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) solutions
in meV per cell (a cell corresponds to 2 f.u.) for the two structures considered for various U and
J values of the GGA+U method (for comparison, with the GGA method we get ΔE AF M−F M =
117/142 meV/cell)

ΔE AF M−F M (meV/cell)
(I 4/mmm)/(I 4/m) J = 0.78 eV J = 0.89 eV J = 1.00 eV

U = 3 eV –34/–14 –32/–13 –32/–18
U = 4 eV –28/–10 –26/–8 –21/–3
U = 5 eV –22/–8 –20/–7 –18/–6

3.1.2 Experimental I4/m Structure

This structure introduces only limited modifications relatively to the previously
considered I 4/mmm one: the neighborhood of each Co or Mo atom remains the
same in terms of O coordination and only the volume of the octahedra is slightly
altered (the O Co and O Mo distances vary by +/–3.6% in the ab plane). Con-
sequently, we do not expect the main structures in the DOS to be affected. However,
because the four in-plane ab Co O Mo bonds are no more rectilinear, the inter-
action between Co and Mo states can be significantly changed affecting directly
the gap between occupied Co and unoccupied Mo states. This is exactly what we
obtain.

With the GGA method (Fig. 4), the DOS are very similar to the previous ones
(Fig. 3) and exhibit more narrow structures separated by larger gaps (for example,
the gap around EF in the spin-up DOS for the FM solution ranges from –0.35 to
1.05 eV and is nearly doubled) indicating clearly more tight Co O Mo bonds.
The AFM solution is found to be also less stable than the FM one by 142 meV/cell.
Surprisingly, this FM solution is 457 meV/cell less stable into the I 4/m crystal
structure than the corresponding FM solution into the I 4/mmm crystal structure.
This difference can be hardly overcome by internal relaxations. Consequently, the
disagreement with the experimental results becomes more pronounced with the
GGA method: the I 4/mmm crystal structure is the most stable and ferromagnetism
is favored to antiferromagnetism.

With the GGA+U method (Fig. 4), an insulating behavior is obtained for both FM
and AFM solutions with enlarged gaps as compared to the ones of Fig. 3 and the
AFM solution is also the most stable one by 7 meV/cell. The major new result of this
calculation is that, for the AFM solution, the I 4/m crystal structure is 160 meV/cell
more stable than the I 4/mmm one (for the FM solution). Even if this result does not
prove that the present I 4/m structure is the most stable one, this shows clearly that
internal relaxations have to be taken into account. Consequently, we found a com-
plete agreement with the experiment using the GGA+U method: the experimental
I 4/m crystal structure is more stable than all other I 4/mmm ones and the SCMO
is an antiferromagnetic insulator. In the following, we consider only the case of
GGA+U calculations for the discussion.
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Fig. 4 Densities of states (DOS) for Sr2CoMoO6 in the I 4/m unit cell for ferromagnetic (FM)
and antiferromagnetic (AFM) solutions using the GGA (left) and the GGA+U (right) method. The
vertical gray line corresponds to the Fermi level (EF ) and n(+) (n(−)) corresponds to the up-spin
(respectively down-spin) DOS



Electronic Structure and Magnetism of Double Perovskite Systems 207

3.1.3 Oxygen-Deficient Case

Experimentally, it has been shown that ferromagnetism is recovered and that the
resistivity is decreased for the oxygen-deficient samples. Using a superexchange
approach as guide, this can be understood by considering that the removal of oxygen
atoms adds two electrons to the delocalized charge per O vacancy and that a fraction
of this additional electronic charge is gained by the Mo atoms in the vicinity of the
vacancy. Consequently, 4d electrons become available on these Mo sites carrying a
negative local magnetic moment and resulting in a ferromagnetic coupling between
Co moments mediated by the Mo one like in SFMO.

It has been shown experimentally that the structure of oxygen-deficient samples
is very similar to the stoichiometric ones [13]. Consequently, we assume that an
oxygen vacancy (O∗) induces no structural relaxations and our cell is built starting
from the same I 4/m cell and removing one O atom of a Co O Mo link along
the c direction corresponding to a lower symmetry space group. We have done the
calculation for Sr4Co2 Mo2 O11, corresponding to a much higher O vacancy con-
centration than the experimental one, and we get the FM solution to be more stable
than the AFM one with both GGA (ΔEF M−AF M = −95 meV/cell) and GGA+U
(ΔEF M−AF M = −76 meV/cell) methods. As expected, we recover clearly Mo

Fig. 5 Densities of states (DOS) for Sr4Co2 Mo2 O11 in the I 4/m unit cell with tilted octahedra
for the ferromagnetic solution using the GGA and the GGA+U methods. The vertical gray line
corresponds to the Fermi level (EF ), the down-spin DOS is displayed with negative values
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Fig. 6 Densities of states (DOS) for Sr4Co2 Mo2 O11 in the I 4/m unit cell with tilted octahedra
for the antiferromagnetic solution using the GGA and the GGA+U methods. The vertical gray line
corresponds to the Fermi level (EF ), the down-spin DOS is displayed with negative values

states around the Fermi level and the magnetic moment on the Mo site having an
O vacancy as neighbor is found large (−0.45 μB for FM and −0.26 μB for AFM).
Finally, the DOS (Fig. 5 and 6) show clearly that the stabilization of a FM solution
corresponds to a half-metallic electronic structure in perfect agreement with the
observed increase of the conductivity for this situation.

3.2 Anti-aligned Fe Magnetic Moments in Bulk SFMO

From the point of view of the band structure, the main change when using the
GGA+U method relative to GGA is a lowering (respectively an increase) of the
energy of occupied (unoccupied) states resulting in an enhancement of the main gap
in the majority spin band from 0.6 to 1.7 eV. However, for both methods, the Fermi
level lies approximately 0.5 eV (0.55 for GGA and 0.48 for GGA+U) below the
bottom of the conduction band in reasonable agreement with the measured half-gap
of 0.7 eV [31]. This gap enhancement has a direct consequence on the predicted
transport properties of epitaxial SFMO films deposited on SrT i O3 (STO) [17].
Indeed, using GGA, a possible transition from metallic to half-metallic SFMO has
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been predicted when the cell is constrained by epitaxy on STO; SFMO being metal-
lic for c smaller than 7.900 Å + 23.614(a – 5.524 Å). This separation line crosses
the experimental c(a) curve for a = 5.54 Å and c = 8.16 Å corresponding approx-
imately to a deposited SFMO thickness of 38 nm. On the contrary, with GGA+U,
SFMO remains half metallic in the range of a and c values explored. Spin-resolved
photoemission experiment as a function of the deposited SFMO thickness could
consequently allows to prove the reliability of the use of GGA+U for such kind of
materials.

For the perfect SFMO case, the considered experimental crystalline structure is
tetragonal within the I 4/mmm space group, with the lattice parameters a = 5.58
Å and c = 7.90 Å, found experimentally by X-ray diffraction [7]. For cases with
imperfections, the same lattice parameters have been used but, depending on the
position of the imperfection site, a lower symmetry space group has been used.
Three situations were considered : (i) SFMO with a perfect crystalline structure,
(ii) SFMO with a single imperfection (Mo or Fe antisite defect, oxygen vacancy),
and (iii) SFMO with two imperfections (Mo or Fe antisite defect and an oxygen
vacancy, two oxygen vacancies), in order to detect any variation which could lead
to a reduction of the total magnetic moment as the one observed. We assume that
no structural relaxation occurs when imperfections are taken into account. This
assumption is supported by the large total energy differences obtained during this
work which would be only slightly affected by relaxations.

Up to now, only Fe or the Mo intersite defects have been considered [10, 12]
leading to the conclusion that the half-metallic character is highly sensitive to such
kind of imperfections. This is not extremely surprising because several Fe O Mo
bonds are concerned by such defects. For example, in the antisite considered
in this section (Fig. 7), half of the X O Y bonds into the unit cell become
X O X (X,Y = Fe or Mo). On the contrary, one oxygen vacancy concerns only
one X O Y bond and has consequently a more limited effect on the concerned
atoms. This is the basic reason for which the electronic structure should be less
affected by the introduction of an oxygen vacancy than by an antisite defect.

The essential role played by the delocalized electrons has been discussed recently
[10]. It is exhibited that the antiferromagnetic coupling between Fe and Mo mag-
netic moments originates mainly from a kinetic energy mechanism due to the polar-
ization of the delocalized states. The introduction of an oxygen vacancy, which
corresponds to removing one O2− atom, should alter significantly the amount
of delocalised electrons and affect (i) the strength of the Fe Mo coupling and
(ii) the magnitude of the localized moments. A close look to the charge shows that an
oxygen muffin tin sphere (which radius is equal to 1.4 Bohr) contains 6.5 electrons.
Consequently, by removing one oxygen atom per cell, 1.5 electrons delocalized or
localized on other atoms are also removed. The calculation shows that these 1.5
electrons are nearly entirely removed from the interstitial charge. This leads us to
the conclusion that an oxygen vacancy affects weakly the charge carried by the
atoms. The spin density around the central Mo atom (having the O vacancy in its
neighborhood) is significantly more altered by the oxygen vacancy than around the
corresponding Fe atom which bond to this Mo atom is removed. More explicitely,
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Fig. 7 Schematic representation of the unit cells used in this work for SFMO: perfect case (a),
with one oxygen vacancy (b), for an Fe antisite (c, d), for an Fe antisite with one oxygen vacancy
(e, f), and for a Mo antisite (g). The Sr atoms are not shown and the antisite is at the center of the
cell

the tetragonal symmetry of the spin density around this Mo atom is completely
lost. We conclude that most of the 1.5 electrons given by the oxygen atoms are
delocalized and not transfered to other atoms : this confirms that they play certainly
an important role on the Fe Mo bond.

The calculations lead us to the conclusion that the observed magnetization can-
not be explained by antisite imperfections because the reduction is too small for
parallel moments and the solution with anti-aligned Fe moments is highly unstable.
If we assume that the loss of magnetization finds its origin into imperfections of the
SFMO phase, the occurrence of oxygen vacancies is clearly a candidate accounting
for it and cannot be neglected.

In order to examine a possible magnetization reduction resulting from a combina-
tion of oxygen vacancies and Fe antisites, we have studied a particular case having
one oxygen vacancy on the octahedra surrounding the Fe antisite (Fig. 7f). This
case can be reasonably supposed to be probable because vacancies are well known
to favor the atomic mobility inside compounds and it is reasonable to assume that a
vacancy and an antisite form a pair of neighbors.

According to the previous section, for all following calculations we use now the
experimental lattice parameters a = 5.58 Å and c = 7.90 Å [7]. For this crystalline
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structure, when one O∗ is introduced, the gap remains but, due to the broadening
of the unoccupied Mo t2g states – resulting from the splitting of the peak into two
peaks – it is reduced by 0.45 eV. As a consequence of the preserved half-metallic
property, the total magnetic moment into the cell is reduced by 2 μB (from 8 μB to
6 μB) because five (resp. 3) electrons are removed from the majority (minority) spin
band. Nearly all eight electrons removed with the vacancy come from the muffin
tin sphere of the removed O atom and from the interstitial volume which become
highly polarized (−0.6 (GG A)/− 0.8 (GG A +U ) μB/cell) as compared to perfect
SFMO for which it is nearly unpolarized. This leads us to the conclusion that O∗

may have a strong impact on the magnetic couplings into the whole cell.
In the cell considered here for simulating Fe or Mo antisite, one of the three Fe

or Mo atoms is on an antisite (AS) which gives a high AS concentration comparable
to the highest value experimentally explored [32]. In this experimental work, the
Mo NMR spectra have been found to be not affected when the AS concentration
is varied from 28 to 3% leading to the conclusion that the transferred hyperfine
field (HF) on Mo sites can be neglected and that the measured HF is given only
by the local Mo magnetic moment. Band structure calculations allow to determine
explicitly these local magnetic moments for varying situations: for instance, for
Sr4 FeMo3 O12 (SFMO[Mo AS]), the 3 inequivalent Mo atoms carry a local moment
of –0.18, 0.04, and 0.26 μB showing clearly that this local moment is highly affected
by imperfections. Whatever the used method is, Sr4 FeMo3 O12 (SFMO[Fe AS])
and SFMO[Mo AS] are found metallic (Figs. 8 and 9) and, consequently, the solu-
tions with all Fe moments aligned are always the most stable. For the particular case
of SFMO[Fe AS], the energy difference between Ferrimagnetic (Fi) solutions with
opposite local moment on the AS is found strongly reduced when using GGA+U
(ΔE(Fi − F) = 78 meV/AS) as compared to GGA (ΔE(Fi − F) = 710 meV/AS).
However, a total energy difference of 78 meV/AS remains a large value and we
believe that relaxations would not change the sign of this difference. Consequently,
even if we relax the atomic degrees of freedom, the F solution is expected to remain
the most stable and the Fi one remains hard to stabilize. This result confirms that
stable Fi solutions involving only AS can be hardly obtained by band structure
calculations.

As previously discussed, oxygen vacancies may affect the magnetic couplings
between Fe atoms. By combining AS and O∗ imperfections, in a Sr4 Fe3 MoO11

(SF M O[Fe AS, O∗]) cell, we get a most stable Fi and half-metallic solution with
the GGA+U method (ΔE(Fi − F) = −222 meV/AS), whereas it remains F and
metallic with the GGA (ΔE(Fi − F) = 360 meV/AS). Consequently, we conclude
that the occurrence of an oxygen vacancy at the octahedra of an Fe AS is nearly the
only way to get a stable negative moment on the Fe AS. Moreover, because the half-
metallic property is preserved in such a solution, we get also an agreement between
the double exchange model (DEM) and the band structure calculations concerning
the stabilization of a negative magnetic moment on the AS. Because the Fe AS
without an oxygen vacancy as neighbor carry a positive moment, only the fraction of
Fe AS forming a pair with an oxygen vacancy give rise to a magnetization reduction:
our work points out that the relevant parameter for studying the occurrence of the
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Fig. 8 Majority (left) and minority (right) spin total densities of states obtained with the GGA
method for SFMO for all seven configurations considered. Each curve has been offset by 15
states/eV per formula unit (f.u.) relatively to the previous one and the vertical line corresponds
to the Fermi level

Fi solution is not the concentration cAS of Fe AS but the concentration cAS,O∗ of
Fe AS and O∗ forming a pair of neighbors. If the occurrence of Fe AS results from
Fe atoms in excess, each single AS adds 1.5 μB to the total magnetization, whereas
each AS and O∗ pair removes 8 μB. If it results from exchange between Fe and Mo
atoms, each single AS adds 1.15 μB to the total magnetization, whereas each AS
and O∗ pair removes only 3.6 μB. Experimentally, a slope around –8 μB per AS is
found corresponding to excess Fe AS and O∗ pairs. However, this would mean that
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Fig. 9 Majority (left) and minority (right) spin total densities of states obtained with the GGA+U
method for SFMO for all seven configurations considered. Each curve has been offset by 15
states/eV per formula unit (f.u.) relatively to the previous one and the vertical line corresponds
to the Fermi level

each Fe AS form a pair with an oxygen vacancy. A priori, it seems difficult to have
cAS = cAS,O∗ and, experimentally, no appreciable deviations to the nominal oxygen
content have been found [33]. But this becomes more reasonable if we consider that
cAS = 25% corresponds to a O∗ concentration of cAS/12 = 2%. Consequently, only
a few percent of oxygen vacancies are required and, considering that they enhance
the atomic mobility of the Fe and Mo atoms, it is highly probable that they form
pairs with most antisites.
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3.3 Comparison with an Exchange-Based Model (EBM)

Usually, to explain the magnetic and the electronic properties of SFMO double
perovskites, models based on double exchange coupling of two successive large
and positive Fe moments to a common small and negative Mo moments are used :
Fe3+ (3d5) ions carrying a 5 μB magnetic moment are negatively coupled to Mo5+

(4d1) ions carrying a 1 μB magnetic moment via a ferrimagnetic super-exchange
mechanism involving the O atom in between the Fe and Mo atoms (Fig. 10).

This explains well the F order obtained on the Fe sublattice by considering
Fe O Mo O Fe chains where two successive Fe moments are negatively
coupled to a common Mo moment. It explains also the half-metallic property giving
(i) a completely filled Fe 3d (t2g and eg) up-spin band split by super-exchange from
the empty Mo 4d (t2g) up-spin band by a gap and (ii) a partially filled Mo 4d (t2g)
down-spin band. Consequently, the single conduction electron into the down-spin
4d shell of Mo is at the origin of the half metallic and F states. Our explicit band
structure calculations using the GGA+U method agree with the conclusions of the
EBM (Ferromagnetic half metal with a total magnetic moment of 4 μB/f.u.) but not
with the considered charge occupation. Indeed, by integrating the charge density
into the muffin tin spheres, we get an occupation of 24.6 electrons for Fe carrying a
moment of 4 μB and an occupation of 38.7 electrons for Mo carrying a moment of
–0.4 μB ; the configuration corresponding much more to Fe2.1+ (3d5.9) and Mo3.5+

(4d2.5) ions. Consequently, Fe Mo hybridized states have to be considered: the gap
into the up-spin DOS splits hybridized (mainly Fe(eg)) fully occupied states from
hybridized (mainly Mo(t2g)) unoccupied states and the partially occupied down-spin
metallic band consists also in hybrized (Fe(t2g) and Mo(t2g)) states.

Considering SCMO, an insulating AF solution is found the most stable with our
calculations. This agrees with the DEM only if we assume that we have Co2+ (3d7)
ions carrying a 3 μB magnetic moment and Mo6+ (4d0) ions carrying no mag-
netic moment. With such a configuration, no d electrons are available on the Mo
site giving the insulating behavior and no double exchange mechanism can take
place for coupling the Co magnetic moments. Indeed, only an antiferromagnetic
super-exchange mechanism can occur involving two Co moments coupled through
two directly linked O atoms of the octahedra surrounding the Mo atom situated at
the corner of the Co Mo Co bond making a right angle. Instead of having the

Fig. 10 Sketch of the bonds into (a) Sr2 FeMoO6 and (b) Sr2CoMoO6. The strength of the inter-
atomic interaction is given by the style of the line representing the bond where the strongest is the
thick solid line, the weakest is the thin dashed line and the medium is the thin solid line
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magnetic coupling dominated by Co O Mo O Co chains, like in SFMO,
the coupling is dominated by Co O O Co ones. Consequently, the two Co
moments are negatively coupled giving rise to an AF order. Like for SFMO,
this model does not agree with our explicit band structure calculations (using the
GGA+U method) when considering local moments and charge occupations. We get
an occupation of 25.8 electrons for Co carrying a moment of ±2.7μB and an occu-
pation of 38.9 electrons for Mo carrying a moment of ±0.02μB; the configuration
corresponding much more to Co1.9+ (3d7.1) and Mo3.6+ (4d2.4) ions. However, a
close look to the DOS shows that these occupied Mo states are very deep in energy
(around –5 eV below the Fermi level) and there are effectively no Mo states available
above –2 eV even if the configuration is not 4d0.

We conclude that BS calculations and the EBM lead to the same conclusion
when the charge occupations obtained from the BS calculations allow the EBM to
be applied.

4 Multilayers with SFMO

4.1 SFMO/STO Perfect Multilayers

4.1.1 Unit Cells

In the [001] direction, SFMO presents an alternance of FeMoO4 and Sr2 O2

atomic layers, whereas STO presents an alternance of T i O2 and Sr O atomic
layers. Using a c(2 × 2) cell for STO, by doubling its in-plane cell, we get an
alternance of T i2 O4 and Sr2 O2 atomic layers similar to the one of SFMO. In
order to have the smallest possible SFMO/STO total cell and to insure that the
inner atomic plane of each SFMO and STO layer has a bulk-like environment, the
total cell is consequently built by juxtaposition of a SFMO layer consisting of a
FeMoO4/Sr2 O2/FeMoO4/Sr2 O2/FeMoO4 stacking (denoted by SF M O5) and
of a STO layer consisting of a Sr2 O2/T i2 O4/Sr2 O2/T i2 O4/Sr2 O2 (denoted by
ST O5) directly in contact (see Fig. 11); the denomination of the total cell corre-
sponds then to SF M O5/ST O5. Even if the bulk in-plane lattice parameters for
SFMO and STO are very similar (aSF M O = 5.57 Å, aST O

√
2 = 5.52 Å), the tetrag-

onal distortion resulting from the adjustment of one in plane parameter to the other
can play a significant role on the half-metallic character of SFMO. Consequently,
we consider the two extreme situations, i.e., using the in-plane parameter of SFMO
or STO for the whole stack with a tetragonal distortion applied, respectively, on the
STO or SFMO layer in order to preserve the cell volume. These cells will be used
for comparing the results obtained with the GGA and the GGA+U methods.

A larger cell will be used for the investigation of the Fe interfacial deficient
case where the interfacial Fe atoms are replaced by Mo atoms; the SF M O5 layer
being replaced by a AMoO4/Sr2 O2/SF M O5/Sr2 O2/AMoO4 layer with A = Fe
(perfect interface) or A = Mo (Fe-deficient interface) denoted, respectively, by
F M O/SF M O7/F M O or M M O/SF M O7/M M O .
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Fig. 11 Schematic
representation of half of the
AMoO4/Sr2 O2/SF M O5/Sr2 O2/AMoO4/ST O5

cell containing all
nonequivalent atomic planes
labeled from a. to h. as in Fig.
12, 13 and 16

4.1.2 SFMO/STO Multilayers : GGA Method

With this method, as anticipated from bulk atomic layer projected densities of states
(ALPDOS), the whole STO/SFMO superlattice is weakly half metallic and a band
energy gap, ranging from 0 to 0.3 eV, remains for all ALPDOS (Fig. 12). The
STO/SFMO interface has a very limited impact onto the electronic structure of the
SFMO even on the interfacial FeMoO4 atomic layer. This is also reflected in the
magnetic moments profile which shows nearly no variation when considering Fe
or Mo atoms from the interfacial and from the central atomic planes MFe = 3.78,
3.77 μB and MMo = –0.29, –0.29 μB, respectively. On the contrary, SFMO-induced
states appear into a large part of the bulk-like band gap of the majority spin density
of states of the STO layer as a consequence of the occurrence of a large number of Fe
states for this range of energy. Consequently, if we consider a SFMO/STO/CoFe tri-
layer where the magnetizations of SFMO and CoFe layers are aligned, the majority
spin transmission should be highly asymmetric in small applied voltage (V ). When
injecting electrons from SFMO to CoFe toward the STO Barrier (for positive V ),
the majority spin transmission should be very small because no states are available
from the SFMO electrode. On the contrary, when injecting from CoFe (for negative
V ), the majority spin transmission should rapidly increase because a large number
of states are directly available below the Fermi level. A similar behavior should also
be obtained for a SFMO/STO/SFMO trilayer but with opposite magnetizations of
the two SFMO layers.

This transmission asymmetry in applied voltage for one spin channel should be
reflected into the total current voltage characteristic and could be a direct proof that
the electronic structure of such oxide layers is correctly or not correctly described
by the GGA method.
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Fig. 12 ALPDOS for SF M O5/ST O5 constrained to the in-plane cell parameter of SFMO (see
text) (a) Sr2 O2 inner STO atomic layer (AL), (b) T i2 O4 AL, (c) Sr2 O2 interfacial AL (d)
FeMoO4 interfacial AL, (e) Sr2 O2 AL, and (f) FeMoO4 inner AL obtained with the GGA
method. The vertical gray line corresponds to the Fermi level (EF ), left and right panels corre-
spond, respectively, to the up-spin and down-spin ALPDOS
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4.1.3 SFMO/STO Multilayers : GGA+U Method

With this method, the SFMO/STO superlattice is really entirely half metallic: as
displayed in Fig. 13, there are no states available around the Fermi level in the
majority spin density of states and the energy gaps of both STO and SFMO layer
are preserved as a consequence of the very similar gaps, the gap of bulk STO ranges
from –1.54 to 0.32 eV. Only electrons of the minority spin band can flow through this
superlattice which corresponds to the parallel configuration of the magnetization of
the two electrodes. For the antiparallel configuration, the gap into the majority band
of the electrode with positive magnetization will present some states induced by
the minority states of the next electrode with negative magnetization through the
thin STO layer and the other way round. Consequently, SFMO is no more strictly
half metallic but the current is certainly extremely weak as compared to the one
in the parallel configuration because each electrode acts as an insulator in its bulk
for one or the other spin channel. The interfacial FeMoO4 ALPDOS (Fig. 13d)
is found very similar to the one of the most central FeMoO4 atomic layer (which
can be considered as bulk-like). Again, this very limited impact of the interface on
the properties of the SFMO layer is also reflected in the magnetic moments profile
which shows nearly no variation when considering Fe or Mo atoms from the inter-
facial and from the central atomic planes (MFe = 3.97, 3.99 μB and MMo = –0.39,
–0.39 μB, respectively). Consequently, the STO layer, terminated by the SrO atomic
plane, has a weak impact on the electronic structure and the magnetic properties of
the SFMO layer.

A high magnetorestistive signal is consequently expected for this case and the
current voltage characteristic should be much less asymmetric than for the previous
case. This shows clearly that “perfect” SFMO/STO multilayers are a priori good
candidates for integration into spintronic devices when their electronic structure can
be described with the GGA+U method.

4.2 The SFMO/STO/CFO MIS-Diode Like

One example of integration of the SFMO/STO interface into a magnetic tunnel junc-
tion consists in depositing a second magnetic oxide like Fe(FeCo)O4 (CFO) onto
STO. Figure 14 represents the evolution of the current as a function of the voltage at
different temperatures between 20 and 290 K, for a junction of 50×50 μm2 for such
a junction. When the temperature is decreased, the current tends to become zero for
negative voltage so that the junction behaves like a diode with a linear dependency
of the current after the threshold voltage of 0.5 V [20]. In order to get an insight into
the electronic structure of the three used materials, the bulk electronic structure has
been determined for all three materials. Because the present discussion remains at a
qualitative level, the variations of the lattice parameters due to strain are not taken
into account.

The electronic structure of SFMO is the one previously obtained for a perfect
unit cell. For STO, we use the usual perfect cubic cell with a = 3.905 Å. Our unit
cell of CoFe2O4 corresponds to the cubic cell with a = 8.397 Å but the primitive
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Fig. 13 ALPDOS for SF M O5/ST O5 constrained to the in-plane cell parameter of SFMO (see
text) (a) Sr2 O2 inner STO atomic layer (AL), (b) T i2 O4 AL, (c) Sr2 O2 interfacial AL (d)
FeMoO4 interfacial AL, (e) Sr2 O2 AL, and (f) FeMoO4 inner AL obtained with the GGA+U
method. The vertical gray line corresponds to the Fermi level (EF ), left and right panels corre-
spond, respectively, to the up-spin and down-spin ALPDOS
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Fig. 14 Current vs. voltage
curves of a 50 × 50 μm2

junction for different
temperatures between 20 and
290 K

cell contains only two atoms of Co in octahedral sites, two atoms of Fe in octahedral
sites, two atoms of Fe in tetrahedral sites, and eight atoms of O. Despite the fact that
Co and Fe atoms have been found to alternate randomly on the same octahedral sites
we use a highly symmetric-ordered cell where the Co atoms have only Fe neighbors
on the octahedral sites sublattice in order to reduce the size of the primitive cell and
to preserve the essential features of the electronic structure.

Figure 15 shows that STO is insulating with a gap of 1.8 eV and that CFO is a
magnetic insulator with a majority spin gap of 0.65 eV and a minority spin gap of
2.0 eV. This figure exhibits the similarity of the system to a metal/insulator/ semi-
conductor (MIS) structure at low temperature: minority spin electrons are injected
from the metallic-like SFMO electrode into the minority spin band of CFO having a
small gap through the insulating STO. The diode-like feature results from the shift of
the CFO bands to lower energies, making available unoccupied minority spin states,
for a positive applied voltage larger than approximately 0.4 V. When the applied
voltage is small enough or negative, no states are available in the CFO electronic
structure so that the current is very low. When the voltage is highly positive, the
electronic structure of CFO is shifted toward negative energies so that there are
unoccupied states available and therefore a current can be observed.

The use of such magnetic electrodes could also allow to control the diode I–V
characteristic by applying a magnetic field. When the magnetization of the SFMO
and CFO electrodes are parallel, we obtain the previously discussed behavior with
a small threshold related to the small gap into the majority spin CFO band. By
reversing only the magnetization of the SFMO layer, the electrons are injected into
the minority spin band of CFO giving another I–V characteristic presenting a higher
threshold and a different slope in the conducting regime.

4.3 SFMO/STO Interface with Fe Deficiency

As presented in the first paragraph of the present section, the unit cell is increased by
considering a thicker SFMO layer so that two nonequivalent FeMoO4 atomic lay-
ers remain when interfacial Fe deficiency will be introduced and only the GGA+U
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Fig. 15 Density of states for spin up and spin down of bulk (a) SFMO, (b) STO, and (c) CFO. The
relative position of the STO and CFO bands to the SFMO one has been tentatively set assuming
that the Fermi level falls in the middle of the gap of the total densities of states

method will be used. For the stoichiometric case, due to the very limited impact of
the interface on the properties of the SFMO layer, the present results are very similar
to the ones discussed in the previous section: the ALPDOS are very similar to the
corresponding ones of Fig. 13 and the magnetic moments profile is very similar too
(when considering Fe or Mo atoms from the interfacial to the central atomic planes
MFe = 3.99, 3.96, 3.97 μB and MMo = –0.40, –0.40, –0.37 μB successively).

Replacing the interfacial Fe atoms by Mo atoms has clearly a strong impact on the
global magnetic and transport properties (Fig. 16). Previous works on bulk SFMO
with imperfections [29] have shown that (i) the half-metallic property is lost when
Mo antisite is introduced by substituing one of the two Fe atom in a Sr4 FeMo3 O12

cell by a Mo atom and (ii) the local moment on the Mo antisite is nearly opposite
(+0.26 μB) to the one on the regular Mo sites (–0.39 μB). However, because this
case corresponds to a bulk situation with a high concentration of Mo antisites (half
of the Fe sites are occupied by Mo), the role played by such antisites is certainly
overestimated.

As displayed by Fig. 16, the electronic structure of the SFMO/STO superlat-
tice with Fe deficiency at the interface shows significant differences as compared
to the “perfect” case. The half-metallic property is lost for the whole cell and the
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Fig. 16 ALPDOS for SF M O9/ST O5 presenting Fe deficiency constrained to the in-plane cell
parameter of SFMO (see text) (a) Sr2 O2 inner STO atomic layer (AL), (b) T i2 O4 AL, (c) Sr2 O2

interfacial AL (d) MoMoO4 interfacial AL, (e) Sr2 O2 AL, (f) FeMoO4 AL, (g) Sr2 O2 AL and
(h) FeMoO4 inner AL obtained with the GGA+U method. The vertical gray line corresponds to
the Fermi level (EF ), left and right panels correspond, respectively, to the up-spin and down-spin
ALPDOS
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spin polarization of the ALPDOS at the Fermi level, defined by P = (n(+)(EF ) −
n(−)(EF ))/(n(+)(EF )+n(−)(EF )), even vanishes completely on the interfacial atomic
layer (from the a to the h atomic layer of Fig. 17, P is equal to –0.33, –0.21,
+0.01, +0.04, –0.37, –0.45, –0.54, –0.99). Consequently, for this case, the interface
is weakly polarized from the point of view of the spin polarization but also from
the point of view of the magnetization; the local moment on the two interfacial
Mo atoms being equal to 0.15 μB on the antisite and to 0.04 μB on the regular
site. As clearly exhibited by Fig. 16f, the interfacial perturbation of the density of
states extents up to the first FeMoO4 atomic layer: its majority spin density of states
presents a peak at the Fermi level being at the origin of the strong reduction of P . For
this ALPDOS, as compared to the bulk-like central FeMoO4 atomic layer for which
the gap ranges from –1.20 to 0.35 eV, the gap into the majority spin band is clearly
partially filled by states ranging from –0.75 to 0.30 eV: the ALPDOS corresponding
to these states presents two peaks which can also be found into the majority-spin
density of states of the Mo2 O4 interfacial atomic layer showing clearly that they
result from the extension of the interfacial states due to the Mo antisite. A similar
feature is obtained into the T i2 O4 density of states of Fig. 17b showing that this
interfacial states extend on both sides of the interface over five atomic layers. Con-
sequently, the SFMO/STO interface becomes clearly spin unpolarized when an Fe
deficiency is introduced but SFMO recovers rapidly its half-metallic feature outside
this interface.

Fig. 17 ALPDOS for bulk Sr4 FeMo3012 (a) MoMoO2 atomic layer (AL) and (b) FeMoO4 AL
obtained with the GGA+U method. The vertical gray line corresponds to the Fermi level (EF ), left
and right panels correspond, respectively, to the up-spin and down-spin ALPDOS

4.4 Discussion

The present band structure calculations show that a lack of Fe atoms at the SFMO/
STO interface results in a nearly unpolarized interface in terms of local magnetic
moments (the Mo interfacial atoms carry small magnetic moments) and in terms
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of polarization P which is found nearly equal to zero. This result is in agreement
with the experimental one of [20] which explains the absence of tunnel magnetore-
sistance signal in terms of an Fe-deficient SFMO surface and interface of SFMO
with STO.

By comparing the ALPDOS displayed in Fig. 16d, f to the equivalent ALPDOS
in a Sr4 FeMo3 O12 cell (Fig. 17), it appears clearly that most of the main features of
the density of states are similar confirming that the T i2 O4 atomic layer has a limited
impact on the electronic structure of the Mo2 O4 interfacial layer. However, from the
viewpoint of the spin polarization, the Fe-deficient interface cancels completely P ,
whereas it is only reduced in the bulk Sr4 FeMo3 O12 cell where P(Mo2 O4) =
+0.24 and P(FeMoO4) = −0.54. Consequently, when coming from bulk SFMO,
the fully polarized current becomes progressively weakly polarized when flowing
through the bulk Fe-deficient layer (which is modeled here by Sr4 FeMo3 O12) and
becomes finally completely unpolarized when reaching the interface. Similarly, for
a current flowing into the other direction, after tunneling through STO, it becomes
unpolarized at the interface and the resulting current becomes unsensitive to the
direction of the magnetization in the second SFMO layer. If it is assumed that an
intrinsic mechanism (like Fe segregation or evaporation) is at the origin of this inter-
facial Fe deficiency, this can explain why no tunnel magnetoresistance is observed
by most of the groups working on this system and why there has been only one
positive result with P = –0.85 by Bibes et al. [19]. When considering that only a
fraction λ of the interface present this Fe deficiency, the resulting spin polarization
can be written as: P = (λn(+) − (1−λ)n(−) −λn′(−))/(λn′(+) + (1−λ)n(−) +λn′(−)),
where n and n’ are, respectively, the interfacial ALPDOS at the Fermi level for the
perfect and the Fe-deficient cases. In order to get the measured P value of –0.85 with
the present calculated values of the density of states, λ has to be around 0.1 which
corresponds to only 10% of the interface presenting Fe deficiency. This confirms
that Bibes et al. [19], using an improved three-step process growth for the SFMO
layer and fabricating nanometer-size tunnel junctions, have effectively reached a
high degree of quality of the SFMO/STO interface.

5 Conclusion

To conclude briefly (each section having its own conclusion), this work shows that
electronic structure calculations give essential information on the magnetic and
transport properties of multilayers build by alternating magnetic and nonmagnetic
oxide layers. It shows also that, for the considered systems, the comparison between
experiments and calculations requires to take imperfections into account by building
less symmetric and/or larger cells resulting in a significative increase of the compu-
tation time. Moreover, for the oxide systems considered here, the GGA+U method
is required to get a satisfactory agreement with the available experiments.
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Effect of Spin–Orbit Coupling on the Magnetic
Properties of Materials: Theory

M. Alouani, N. Baadji, S. Abdelouahed, O. Bengone, and H. Dreyssé

Abstract This contribution concerning the effect of spin–orbit coupling on the
magnetic properties of materials is divided into two chapters. In the first chapter
we review the method based on the density functional theory (DFT) within the local
density approximation (LDA) used to compute the electronic structure, the magnetic
anisotropy, the x-ray absorption spectra, and the x-ray magnetic circular dichroism.
We give the major approximations used to derive the Kohn–Sham equations with
or without the Hubbard interaction for correlated orbitals. We give also a brief
introduction to the generalized gradient approximation (GGA). We then provide a
solution of the latter equations using the full-potential linear augmented plane wave
(FLAPW) basis set and discuss the so-called LDA+U method, where the Hubbard
U is included for localized orbitals. We show how the relativistic effects, such as
the spin–orbit coupling, can be introduced into band structure calculations and show
their effect on magnetism, i.e., magnetic anisotropy energy (MAE), magneto-optical
properties, and x-ray magnetic circular dichroism (XMCD). Then we show a brief
derivation of the force theorem for the calculation of the magnetic anisotropy as well
as a description of its application to the MAE calculations and show the details of
the calculation of the XMCD matrix elements in the electric–dipole approximation.
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The second chapter of this contribution includes some applications of the method
to the computation of the electronic, magnetism, and spectroscopic properties of
spintronics materials. In particular , we investigate the electronic structure and x-ray
magnetic circular dichroism (XMCD) of Sr2FeMoO6 (SFMO for short) and other
useful ferromagnetic half-metals with 100% spin polarization, materials useful for
spin injection. In particular, we show that the spin–orbit coupling reduces the spin
polarization while the intra-site electronic correlations tend to increase it. For exam-
ple, SFMO is found to be a half-metallic ferrimagnet with a gap in the spin-up
channel. The calculated spin magnetic moments on Fe and Mo sites confirm the
ferromagnetic ordering and settle the controversy existing between the earlier exper-
imental works. The orbital magnetism at the Fe and Mo sites agrees quite well
with the recent experimental XMCD measurements. The computed L2,3 XMCD
at the Fe and the Mo sites compares fairly well with experiment. The XMCD sum
rule computed spin and orbital magnetic moments are in good agreement with the
values obtained from the direct self-consistent calculations. In the last application,
we focus on the GGA+U treatment of the electronic and magnetic structure of Gd
and Gd-related compounds, such as GdN and GdFe2. We compare the calculated
density of states to the experimental photoemission and inverse photoemission spec-
tra (XPS and BIS) and determine the Fermi surface with and without the Hubbard
U and spin–orbit coupling. The GGA+U is found to be the most appropriate for
treating the 4 f Gd electrons. We have investigated the bulk properties and calcu-
lated the XMCD spectra at the L2,3 edges at the Gd site of GdN. The agreement
of the calculated spectra with experiment is the indication of the relevance of the
XMCD formalism within the one-electron picture. The results also show that the
ground-state electronic structure of GdN is that of a half-metal. Finally our compu-
tational method is used to determine the magnetic anisotropy aspect of the Gd and
its compounds GdN and GdFe2. Using the force theorem, we have calculated the
MAE of Gd, GdN, and GdFe2 for different directions of the magnetization. Indeed,
owing to the nil spin–orbit interaction of the 4 f half-filled shell, the force theorem is
expected to be efficient for Gd and Gd compounds MAE calculations. This theorem
allows a considerable computational effort gain since the spin–orbit coupling could
be calculated only for one self-consistent iteration. Once again, the GGA+U method
is found to be the most adequate approach for the force theorem calculations of the
Gd MAE. The GGA and GGA-core model treatments of the 4 f states have led to a
wrong MAE. It turns out that the electronic properties and the magnetic properties
of 4 f systems are tightly related, and the 4 f electrons play a crucial role in the
computed magnetic anisotropy. Although the Gd MAE is found to be similar to
that of a typical 3d transition metal like hcp Co, the GdN and GdFe2 cubic crystals
MAEs are found to be different from that of a pure 3d cubic material like fcc Ni.

1 Introduction

In the last few years, with the advance in the computer technology, it has become
clear that a correct solution of the Kohn–Sham equations [1] is needed to pro-
duce accurate results concerning the electronic structure and magnetic properties of
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materials. Accordingly, ab initio methods have been extended to treat correctly the
effective potential of solids, the spin polarization, and the relativistic effects [2–5].
Thus, new methods have been used to compute the magnetic properties of materials
[3, 5–7]. In particular, important advances have been made in the determination of
the magnetocrystalline anisotropy [8–10], non-collinear magnetism [11], the x-ray
magnetic circular dichroism [5, 10], and magneto-optics [12]. To calculate accu-
rately these properties both the spin–orbit coupling and the spin polarization have
to be incorporated in band structure methods.

On the other hand, the experimental development of the x-ray magnetic circu-
lar dichroism spectroscopy [13, 14] (XMCD), together with the discovery of the
sum rules which permit the determination of the spin and orbital moments from the
integrated XMCD spectra [15, 16], has made this spectroscopy an interesting tool
for studying magnetic properties of materials. This is so because XMCD can probe
the magnetic properties of any specific atom and orbital of magnetic materials.
XMCD can be also used to explore the magneto-crystalline anisotropy (MCA) by
determining the orbital moment anisotropy. On the theoretical level, Bruno con-
nected the orbital moment anisotropy to the MCA in the special case of the 3d
transition metals [17] in which there are no holes in the spin-up band and where
the crystalline field parameter is much smaller than the spin–orbit coupling. Later,
van der Laan showed that the magnetocrystalline anisotropy is directly related to
the anisotropic part of the spin–orbit coupling rather than to the orbital moment
[18]. A general relation that strictly relates the MCA to the anisotropy of the orbital
moments is still lacking, however.

These advances in XMCD spectroscopy enabled further interest in ab initio
description of magnetism. Freeman and coworkers developed a slab LAPW method
to study the XMCD of transition metals and their surfaces [3]. The method was
used to check the validity of the XMCD sum rules, and it was found that the orbital
moment obtained from the sum rule is within 10% from the direct calculation and
the spin moment is much worse and can be off by upto 50% in the case of Ni(001)
surface. Using a different formalism based on the full-potential relativistic linear
muffin-tin orbital method, Alouani, Wills, and Wilkins study the XMCD of Fe
nitrides [5, 19]. They showed that the XMCD intensity is directly proportional to
the spin magnetic moment and that the spin and orbital moments obtained from
the XMCD sum rules are in good agreement with the direct calculation. Later, this
formalism was used by Galanakis et al. to study the transition metal binary alloys
and the so-called Heusler alloys [10]. The same method was also extended to study
the magneto-optical properties of materials [12]. Using multiple scattering theory
Ankudinov and Rehr studied the XMCD in Gd [20] and Brouder, Alouani, and
Bennemann studied the K-edge of Fe [21].

This chapter is structured as follows. We first discuss and give an overview of
new development in methodology to compute the electronic structure problem. We
then discuss and outline the founder ideas and the formulation of the DFT together
with relativistic effects in a whole section about the density functional method. The
main features of the FLAPW method which is used here to compute XMCD spectra
and magnetic anisotropy energy are presented. Emphasis is put on the description
of the spin–orbit coupling relativistic effect within the FLAPW method; a brief
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derivation of the force theorem as well as a description for its application to the
MAE calculations is provided. A whole section is devoted to another consequence
of the spin–orbit coupling, that of the XMCD and a special attention is given to
the description and the derivation of the XMCD formalism as a magneto-optical
effect.

2 Methodological Developments

Based on the work of Callaway [22], Ebert implemented the relativistic effects in
ab initio methods to explore the magnetic properties of the spin-polarized electrons.
In particular, Ebert implemented a fully relativistic linear muffin-tin method in the
atomic-sphere approximation [2], and later extended it to determine the magneto-
optical properties and the x-ray magnetic dichroism of transition metals and their
binary alloys [4]. This allowed him to make the first calculation of the magnetic
x-ray dichroism of the Fe K-edge which was found in good agreement with the
experimental results of Schütz et al. [14]. Later, Halilov and Uspenskii used a similar
method to determine the effect of the spin–orbit coupling and the spin polarization
on the optical conductivity tensor of 3d ferromagnetic transition metals [23, 24].
However, the agreement with experiment was limited probably due to their use
of the atomic-sphere approximation. During the same period Kübler and cowork-
ers [25] used the augmented spherical wave method (ASW) in the atomic-sphere
approximation to study the magneto-optical Kerr effect of Fe and Ni. The agreement
with experiment was much better than in case of Halilov and Uspenskii calculation
[23, 24] due to the better calculation of the matrix elements involved in the interband
transitions. The ASW method was later used to determine the magneto-optical spec-
tra of uranium compounds [25] (US, USe, and UTe). While the diagonal conduc-
tivity tensor elements were well reproduced, the off-diagonal elements and the Kerr
angle did not agree well with the experimental data. The relativistic LMTO-ASA
was also used by Oppeneer and Antonov to study the magneto-optical properties
of the so-called Heusler alloys and good agreement with the experimental data was
achieved [26].

Usually spin–orbit coupling is included in the band structure calculation using
perturbation theory [2]. In some cases the full Dirac Hamiltonian is solved self-
consistently. It has been argued that the latter description is more appropriate since
the basis set has no restriction, especially when dealing with heavy elements where
spin–orbit coupling is very strong [4]. Nonetheless, perturbation theory is more
widely used in the literature [5, 20, 21].

3 Density Functional Theory

Calculating electronic and magnetic properties of materials is not a simple task even
in the ground state. Materials are composed of atoms held together by chemical
bonds insured by the valence electrons. Involving so many particles gives rise to a
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complex many-body problem. One of the early proposed simplification to deal with
such complexity is the Born–Oppenheimer approximation.

3.1 The Born–Oppenheimer Approximation

The Born–Oppenheimer approximation [27] (BOA) consists of dividing the total
solid-state problem into two parts: the motion of the electrons in a stationary lattice
and that of the ions in a uniform space charge of electrons. The total Hamiltonian
H which represents the total energy of a realistic system can be written as

H = He + HI + He−I , (1)

where He, HI , and He−I are the electrons, the ions, and the electrons–ions interaction
parts of the Hamiltonian respectively.

To understand the full meaning of the BOA we consider a system of nuclei
described by coordinates R1, ..., RN ≡ R and momenta P1, ..., PN ≡ P and masses
M1, ..., MN and the electrons described by coordinates r1, ..., rNe ≡ r and momenta
p1, ..., pNe ≡ p and spin variables, s1, ..., sNe ≡ s. The Hamiltonian of the system is
given by

H =
N∑

I=1

P2
I

2MI
+

Ne∑

i=1

p2
i

2m
+
∑

i> j

e2

|ri − r j | +
∑

I>J

Z I Z J e2

|RI − RJ | −
∑

i,I

Z I e2

|RI − ri |

≡ TN + Te + Vee(r) + VNN(R) + VeN(r, R), (2)

where m is the mass of the electron, and Z I e is the charge on the nucleus, TN, Te, Vee,
VNN, and VeN represent, respectively, the nuclear and electron kinetic energy opera-
tors and electron–electron, nuclear–nuclear, and electron–nuclear interaction poten-
tial operators, respectively. This Hamiltonian is very general and can describe any
material. The solution of this Hamiltonian would predict any physical or chemical
property of the material we are studying. This problem cannot be solved, so many
approximations should be made in order to hope for some reasonable description of
the properties of materials. The formal solution of this full many-body problem will
amount in solving the following Schrödinger equation:

[TN + Te + Vee(r) + VNN(R) + VeN(r, R)] Ψ(x, R) = EΨ(x, R), (3)

where x ≡ (r, s) represents the electron positions and spin variables, and Ψ(x, R) is
an eigenfunction of H wih eigenvalue E .

In order to make progress, we use the Born–Oppenheimer approximation (BOA)
by noticing that because the electrons are lighter than the nuclei by three orders of
magnitude there is a strong separation of timescales between the electronic and the
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nuclear motion. In Eq. (3) we assume the separation of the degrees of freedom of
the electrons and that of the nucleus and use the following form:

Ψ(x, R) = φ(x, R)χ (R), (4)

where χ (R) is a nuclear wave function and φ(x, R) an electronic wave function
that depends parametrically on the nuclear positions (R). This BOA is justified by
the fact that nuclei are several thousand times heavier than electrons due to the
fact that a proton or a neutron is about 1,836 times more massive than an electron.
The electrons follow the nuclear motion adiabatically, i.e., they are dragged along
with the nuclei with almost no relaxation time. This is a reasonable approximation,
because the non-adiabatic effects that do not allow the electrons to follow in this
instantaneous manner are usually small. In almost all materials, the adiabatic sepa-
ration between electrons and nuclei is a good approximation:

[Te + Vee(r) + VeN(r, R)] φ(x, R) = E(R)φ(x, R). (5)

Equation (5) is an electronic eigenvalue equation for an electronic Hamiltonian
which will yield a set of normalized eigenfunctions, φn(x, R), and eigenvalues,
En(R), which depend parametrically on the nuclear positions. For each solution,
there will be a nuclear eigenvalue equation:

[TN + VNN(R) + En(R)] χ (R) = Eχ (R). (6)

Moreover, each electronic eigenvalue, En(R), will give rise to an electronic sur-
face, and these surfaces are known as Born–Oppenheimer surfaces (BOS). Thus,
the internuclear potential for each electronic surface is given by VNN(R) + En(R).
On each Born–Oppenheimer surface, the nuclear eigenvalue problem can be solved,
which yields a set of levels. The Born–Oppenheimer surfaces are surfaces on which
the nuclear dynamics is described by a time-dependent Schrödinger equation for the
time-dependent nuclear wave function χ (R, t):

[TN + VNN(R) + En(R)] χ (R, t) = i�
∂

∂t
χ (R, t). (7)

Equation (7) tells us that the electrons respond instantaneously to the nuclear
motion; therefore, it is sufficient to obtain a set of instantaneous electronic eigen-
values and eigenfunctions for every nuclear configuration and therefore we obtain
the parametric dependence of φn(x, R) and En(R). The eigenvalues give a set of
independent potential surfaces on which the nuclear wave function can evolve. It is
possible that for some materials these BOS can couple by the non-adiabatic effects,
contained in the terms that have been neglected that might couple the electron
degrees of freedom to those of the nucleus.
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An important assumption of the BOA is that there are no excitations of the
electrons among the various BOS. Such excitations constitute non-adiabatic effects
which are, therefore, neglected. As an example of a condition in which this approx-
imation is valid, consider a system at temperature T ; if the electrons are in their
ground state E0(R) then, if E1(R) denotes the first excitates state, there will be no
excitations to this state if

|E1(R) − E0(R)|  kT, (8)

for all nuclear configurations. Without complete determination of these BOS, it is
not possible to know whether this condition will be satisfied or not. There could be
regions where the surfaces approach each other with an energy spacing close to kT .
If the system visits such nuclear configurations, then the BOA will break down.

In many cases, non-adiabatic effects can be neglected, and we may consider
motion only on the ground electronic surface described by

[Te + Vee(r) + VeN(r, R)] φ(x, R) = E(R)φ(x, R),

[TN + E(R) + VNN(R)] χ (R, t) = i�
∂

∂t
χ (R, t). (9)

Moreover, if nuclear quantum effects can be neglected, it can be shown that the
nuclei are described by the classical Hamilton–Jacobi equations with

HN(P, R) =
N∑

I=1

P2
I

2MI
+ VNN(R) + E(R). (10)

With the ground-state total energy given by E = E(R) + VNN(R).

ṘI = PI

MI
,

ṖI = −∇IE(R). (11)

The force on the atoms −∇IE(R) contains a term from the nuclear–nuclear repul-
sion and a term from the derivative of the electronic eigenvalue E(R). Using the
Hellman–Feynman theorem, the latter term can be expressed as

∇I E(R) = 〈φ(R)|∇I He(R)|φ(R)〉. (12)

Equations (11) and (12) form the theoretical basis of ab initio molecular dynam-
ics approaches. The practical implementation of the ab initio molecular dynamics
method requires an algorithm for the numerical solution of Eq. (11) with forces
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obtained from Eq. (12) at each step of the calculation. Moreover, since an exact
solution for the ground-state electronic wave function, |φ(R)〉, and eigenvalue,
E(R), are not available, in general, it is necessary to introduce a method for obtain-
ing these quantities. At this stage the wave function φ(r1, s1, . . . rN , sN ) depends on
the coordinates of the N electrons and their spins.1 However, since the Hamiltonian
is the observable accounting for the measurable total energy, according to quantum
mechanic principles, the eigenfunctions φ have to be written as an expansion in
terms of a complete set of basis functions. This is the case, for example, for the
configuration interaction (CI) method where the ground-state wave function is a
linear combination of Slater-wave functions or the Hartree–Fock mean-field approx-
imation which has offered the simplest approach to handle the N electrons problem
and where the wave function is expressed as a single Slater determinant.

3.2 The Hartree–Fock Approximation

We focus now on the motion of the electrons, as described in Eq. (5). We con-
sider an electron gas which is embedded in a homogeneous, positively charged
medium (jellium medium) or in a rigid lattice of positively charged ions. Even with a
jellium medium this problem is very difficult to solve because of the complexity of
the electron–electron interaction. In the absence of this interaction, the many-body
problem would decouple into one-body problems which describe the motion of an
electron in an effective potential (the one-electron approximation). In this case the
electron Hamiltonian (5) becomes2

H = −
∑

k

1

2
∇2

k +
∑

k

Vext(rk) + 1

2

∑

k,k ′

1

|rk − rk ′ | =
∑

k

Hk +
∑

k,k ′
Hk,k ′ . (13)

According to the variational principle, those ϕk which minimize E represent the
best set of functions for the ground state. For the Pauli principle to apply, the wave
function should be written as a Slater determinant

φ = (N !)−1/2

∣∣∣∣∣∣∣

ϕ1(x1) . . . ϕN (x1)
...

...
ϕ1(xN ) . . . ϕN (xN )

∣∣∣∣∣∣∣
, (14)

where the xN coordinates stand for both the spatial coordinates rN and the spin
coordinates χN . The normalizing factor (N !)−1/2 accounts for the indistinguisha-
bility of the electrons since there are N ! possible ways of distributing N electrons

1 The wave function depends also on the coordinates of atoms, but as it is seen above, these coor-
dinates appear only as parameters in Eq. (5).
2 We use atomic units � = m = e2 = 1.
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at the N positions r1, ·, rN . The fermionic character of the electrons is therefore
insured by the antisymmetric wave function (14). With the wave function (14),
we can again calculate the expectation value E = 〈φ |H | φ〉. To include spin-
polarized systems, we define the one-electron wave function for each electron spin

as ϕkσ (x) = ϕkσ (r)χσ , where χ+ =
(

1
0

)
and χ− =

(
0
1

)
. The total energy is then

given by

E =
∑

σ

Nσ∑

k

∫
ϕ∗

kσ (r)

(
1

2
∇2

k + Vext(r)

)
ϕkσ (r)d3r + 1

2

∫
�(r1)�(r2)

|r1 − r2| d3r1d3r2

− 1

2

∑

σ

∫
�σ (r1, r2)�σ (r2, r1)

|r1 − r2| d3r1d3r2,

(15)

where �σ (r1, r2) = ∑Nσ

k=1 ϕkσ (r2)ϕkσ (r1) and �(r) = ∑σ �σ (r), and �σ (r) is the
trace of �σ (r1, r2). The integration here includes a summation over the spin variable
σ . We further note that in the absence of spin–orbit coupling, every wave function
can be written as the product of a space function and a spin function. The last term
on the left-hand side of Eq. (15) leaves us with just a summation over electrons with
the same spin, because the orthogonality of the spin functions causes the other spin
terms to disappear. We therefore vary Eq. (15) for any ϕ∗

kσ or ϕkσ and equate the
variation to zero:

δ/φ∗
kσ [E −

∑

kσ

Ekσ (〈ϕkσ |ϕkσ 〉 − 1)] = 0. (16)

We get

[
−∇2

2
+ Vext(r) +

∫
�(r′)

|r − r′|d3r ′
]

ϕkσ (r)

−
∫

�σ (r, r′)
|r − r′| ϕkσ (r′)d3r ′ = Ekσ ϕkσ (r), (17)

where Ekσ are Lagrange parameters fulfilling condition (16), and we use r for the
coordinates of the electron under consideration. This is the Hartree–Fock equa-
tion [28, 29]. The Schrödinger equation for the many-electron problem is thus
split up into one-electron wave equations. While the Hartree equation was easy
to interpret, the newly added third term on the left-hand side of Eq. (17) has
no classical analogue. It is called the exchange interaction. There is an equa-
tion of the same form for each of the different one-electron functions, and these
equations must be solved simultaneously. For a single atom this can be done
by a method of successive approximations, until self-consistency of the required
degree of accuracy is reached. In metals, the problem is too complicated and
cruder approximations must be used. Electrons repel one another, so that they
do not move independently but in such a way as to avoid each other as far as
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possible. Such correlations among the electrons’ motions, or positions, are called
Coulomb correlations. In the Hartree method, Coulomb correlations are completely
ignored, each electron being supposed to move in the average charge distribu-
tion of the other electrons. The total wave function is a single product of one-
electron functions, so that the probability of a given configuration depends only
upon the one-electron functions and not directly upon the distances between pairs
of electrons. The Hartree–Fock method again neglects proper Coulomb correla-
tions, but includes correlations of another kind. These are correlations among the
positions of electrons with parallel spins only (the exchange interaction of the Eq.
(17)) and are due not to the Coulomb force but to the Pauli principle, as embodied in
the use of a determinantal wave function. The exchange potential can be rewritten
as an electrostatic potential which is due to a fictitious nonlocal exchange charge
density:

nkσ (r1, r2) = ϕkσ (r2)�σ (r1, r1)

ϕkσ (r1)
,

so that the exchange term becomes

−
∫

�σ (r, r′)
|r − r′| ϕkσ (r′)d3r ′ = −

∫
nkσ (r, r′)
|r − r′| d3r ′ϕkσ (r).

This nonlocal exchange density integrates exactly to one
∫

nkσ (r1, r2)d3r1 = 1.
This implies that each electron of a given spin is surrounded by exactly one
exchange hole originating from the polarization of the medium due to the same-spin
electron repulsion. This exchange hole sum rule will turn out to be very important
for the determination of the density functional exchange and correlation potentials.
The correlations, associated with the exchange, are known rather under the name of
the exchange–correlation potential in the density functional theory (DFT) formal-
ism, which will be approached in more detail in the next section. The Hartree–Fock
method becomes well known among chemists because it verifies the Koopman’s
Theorem for the ionization energies Ikσ of any state kσ ,

Ikσ = E(N − 1kσ ) − E(N ) = −Ekσ ,

and the results agree very well with experimental data. However, electronic structure
of materials and energy band gaps obtained within this approximation are in very
bad agreement with experiments. Therefore most of electronic structure calculations
are obtained with methods that go beyond this approximation to the many-body
problem.
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One of the early attempts to estimate the electron–electron interaction in solids
and introduce the charge-dependent total energy in solids is that of the Thomas–
Fermi model [30, 31], the Hartree–Fock approximation, and the X-α method of
Slater [32]. The extension of these ideas, which have given rise to a revolution in
the parameter-free ab initio description of complex electronic structure, is known as
DFT. This was established by Hohenberg and Kohn [33] and Kohn and Sham [1]
and will be reviewed next.

3.3 The Hohenberg–Kohn Theorems

The finding of Hohenberg and Kohn for non-magnetic systems with a non-degenerate
ground state is based on two theorems [33].

Theorem 1 The external potential υ, and hence the total energy of a system, is a
unique functional of the ground state electron density n(r).

Theorem 2 The exact ground state electron density minimizes the total energy func-
tional E[n(r)].

A brief demonstration is provided in the Hohenberg–Kohn paper [33]. In their
paper, the Hamiltonian H is defined as H = T + V + W , for which T represents
the kinetic energy of the system, V the interaction of the electrons with an external
potential, and W the electron–electron interaction. The solution of this Hamiltonian
is the many-body wave function φ(r1, r2, . . . rN ), and we have

Hφ = Eφ. (18)

The electron density can be calculated from

n(r) =
〈
Ψ

∣∣∣∣∣

N∑

i=1

δ(r − ri )

∣∣∣∣∣Ψ
〉

(19)

The extension of these theorems to the spin-polarized systems can be done by
including an external magnetic field, B(r), so that the Hamiltonian becomes H =
T + U + W , where U = ∫ υ(r)n(r) − B(r).m(r)d3r.

Using the variational principle (in the same way as it was used to demonstrate
Theorem 1), one can show that the ground-state energy is a unique functional of the
electron and magnetization density (n(r) and m(r)). Using the theorems above to get
a practical scheme to use DFT in describing solids, Kohn and Sham [1] have shown
that instead of solving the many-body equation (18), it suffices to solve an effective
one-particle equation.
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3.4 The Kohn–Sham Equations

An important step on the way to finding an applicable approximation of the
Hohenberg–Kohn functional energy is the Kohn–Sham equations [1]. The main idea
is to split the many-body equation (18) into an effective one-particle equation

[−∇2

2
+ Veff(r)

]
ψi (r) = εiψi (r), (20)

where the effective potential Veff(r) has the form

Veff(r) = Vext(r) +
∫

n(r′)
|r − r′|d3r ′ + Vxc(r), (21)

where the first term is the external potential generated by the nuclei, the second the
electrostatic potential, and the last the exchange–correlation potential supposed to
include all many-body effects. The density is now constructed using

n(r) =
N∑

i=1

|ψi (r)|2, (22)

where the sum runs over all occupied states.
The set of Equations (20), (21), and (22) represents the Kohn–Sham equations.

The Kohn–Sham equation given by Eq. (20) can be viewed as a Schrödinger-like
equation in which the external potential is replaced by the effective potential (21),
which depends on the electron density. The electron density itself depends on the
one-particle states ψi . The Kohn–Sham equations need therefore to be solved in a
self-consistent manner. The total energy functional E[n(r)] expressed in terms of
the one-particle energies εi (the Fock eigenvalues) has the form

E[n(r)] = T0[n(r)] +
∫

n(r)Vext(r)d3r + 1

2

∫ ∫
n(r).n(r′)
|r − r′| d3rd3r ′ + Exc[n(r)],

(23)
where T0[n(r)] accounts for independent-electron kinetic energy. This kinetic energy
can be expressed in terms of the one-particle energies εi as

T0[n(r)] =
∑

i

fiεi −
∫

Veff(r)n(r)d3r, (24)

where fi is the Fermi distribution function (one for occupied states and zero for
empty states). Using Eq. (24), the total energy functional can be rewritten as
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E[n(r)] =
∑

i

fiεi − 1

2

∫ ∫
n(r).n(r′)
|r − r′| d3rd3r ′ −

∫
Vxc(r)n(r)d3r + Exc[n(r)].

(25)
The exact exchange–correlation potential Vxc and functional Exc[n(r)] are, how-

ever, not known and further approximations are needed for the solution of the elec-
tronic structure problem.

3.5 The Local Density Approximation

Since the first three terms on the right-hand side of Eq. (23) represent most of
the total energy can be calculated numerically, the remaining complexity of the
fully interacting system is mapped into the problem of finding the exchange and
correlation functional. The most common and widely used approximation of the
exchange–correlation functional is the so-called local density approximation (LDA)
where the exchange–correlation energy is approximated by that of a homogeneous
uniform electron gas,

Exc[n(r)] =
∫

εhom
xc [n(r)]n(r)d3r, (26)

where εhom
xc is the sum of the exchange and the correlation energy of the uniform

electron gas of density n(r). The exchange energy can be calculated analytically and
the correlation energy has been parametrized and calculated to a great accuracy by
means of a quantum Monte Carlo method [34]. The exchange–correlation potential
V LDA

xc (r) is the functional derivative of ELDA
xc , which can be written as

Vxc(r) = εxc[n(r)] + n(r)
∂(εxc[n(r)])

∂n(r)
. (27)

The most early parametrization attempts of the exchange–correlation energy εxc

are those of Barth and Hedin [35]:

εxc(n↑, n↓) = εP
xc(rs) + [εF

xc(rs) − εP
xc(rs)] f (n↑, n↓), (28)

where

f (n↑, n↓) = [(2n↑/n)4/3 + (2n↓/n)4/3 − 2]/(24/3 − 2), (29)

n↑ and n↓ represent, respectively, the spin-up and spin-down components of the
total charge n (n = n↑ + n↓), and rs is defined by

(4/3)πr3
s = 1/n. (30)
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The paramagnetic, P , and ferromagnetic, F , exchange–correlation energies in
Eq. (28) are given by

εi
xc = εi

xc(rs) − ci G(rs/ri ), i = P, F (31)

where εP
x = −0.91633/rs , εF

x = 21/3εP
x ,

G(x) = (1 + x3) ln(1 + 1/x) − x2 + x/2 − 1/3, (32)

and cP , cF , rP , rF were chosen by fitting Eq. (28) to εxc for the homogeneous elec-
tron gas. The resulting parameters [35] are

CP = 0.045, rP = 21, cF = cP/2, rF = 24/3rP . (33)

The most commonly used parametrization is that of Moruzzi et al. [36]. The
corresponding parameters are

CP = 0.0504, rP = 30, cF = 0.0254, rF = 75. (34)

According to Eqs. (27) and (28) the resulting potential takes the form:

V σ
xc = [4/3εP

x (rs) + γ (εF
c (rs) − εP

c (rs))](2nσ /n)1/3

+μP
c (rs) − γ (εF

c (rs) − εP
c (rs)) (35)

+[μF
c (rs) − μP

c (rs) − 4/3(εF
c (rs) − εP

c (rs)] f (n↑, n↓),

where

μP
c (rs) = −cP ln(1 + rs/rP ),

μF
c (rs) = −cF ln(1 + rs/rF ), (36)

γ = 4/3(21/3 − 1).

This potential is referred to as the LDA exchange–correlation potential in the rest
of the chapter.

Although the local density approximation is rather simple and expected to be
valid only for homogeneous cases, it turns out that it usually works remarkably
well even for inhomogeneous cases. However, for solids LDA very often gives too
small equilibrium volumes (∼3%) due to overbinding. A simple improvement to
the LDA that corrects the lattice parameter is based on the generalized gradient
approximation (GGA).
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3.6 The Generalized Gradient Approximation

Even though the LDA has been successfully applied to systems with varying charge
density, it is rather valid for systems with nearly constant charge density. In order
to understand the effect of the charge density variation in terms of the exchange–
correlation interaction many attempts have been made so far. One of these attempts
has given rise to the so-called generalized gradient approximation (GGA), where
not only the density itself enters in the exchange–correlation energy but also its
local gradient. The most successful one is the one suggested by Perdew and Wang
(PW91) [37] and its simpler form by Perdew, Burke, and Enzerhof (PBE) [38].
We focus here on the latter one, which will be henceforth referred to as the GGA
exchange–correlation potential.

The exchange–correlation energy now has the form:

EGGA
xc =

∫
n(r)εhom

xc (n(r), |∇n|)d3r, (37)

which can be expressed as [38]

EGGA
xc =

∫
f (n↑, n↓,∇n↑,∇n↓)d3r. (38)

The simplified scheme of the PBE approximation consists of evaluating sepa-
rately the correlation and the exchange energy as follows:

EGGA
c =

∫
[εunif

c + H (rs, ξ, t)]d3r, (39)

where rs is the Seitz radius (as defined by Eq. (30)), ξ is the relative spin polar-
ization, and t = |∇n|/2φ(ξ )ksn is a dimensionless density gradient. Here φ(ξ ) =
[(1 + ξ )2/3 + (1 − ξ )2/3]/2 is a spin scaling factor and ks = √

(4kF/πa0) is the
Thomas–Fermi screening wave number. The constructed H function has the form

H = 2γφ3 ln

{
1 + β

γ
t2

[
1 + At2

1 + At2 + A2t4

]}
, (40)

where

A = β

γ

[
exp(−εunif

c /(γφ3e2/a0)) − 1
]−1

. (41)
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β = 0.066725 and γ = (1− ln 2)/π2. The exchange energy functional obeys the
relationship

Ex [n↑, n↓] = (Ex [2n↑] + Ex [2n↓])/2, (42)

where

Ex =
∫

nεx (n)Fx (s)d3r, (43)

and

Fx (s) = 1 + κ − κ/(1 + μs2/κ), (44)

and where s = |∇n|/2kF n is another dimensionless density gradient, κ = 0.804
and μ = 0.21951.

It is worth mentioning here that like the LDA, the GGA obeys the exchange and
correlation hole density sum rules, first derived for the LDA [39]:

∫
nx (r, r′)d3r ′ = −1, (45)
∫

nc(r, r′)d3r ′ = 0, (46)

and the negativity condition of the exchange hole:

nx (r, r′) ≤ 0, (47)

where r′ = r + u and nx (r, r + u), nc(r, r + u) are, respectively, the exchange and
the correlation hole density of radius u surrounding the electron at r according to
the exchange energy definition of Gunnarson and Lundqvist [40]: the exchange–
correlation energy is the electrostatic interaction of each electron at r with the
density nxc(r, r + u) = nx + nc at r + u of the exchange–correlation hole which
surrounds it.

Figure 1 illustrates the difference between the exchange–correlation potential
calculated using the GGA and the LDA. As it can be seen from the figure, although
both approximations lead to small differences for different radii (because each of
them is satisfying the same sum rules), this difference is locally perceptible (varying
from 0.01 to 0.1 Htr). We have to mention here that, compared to the LDA, the
GGA leads to better structural properties, i.e., it gives lattice parameters in better
agreement with experiments. However, both the LDA and the GGA potentials suffer
from electron self-interaction. Perdew and Zunger [41] self-interaction correction
consists in proposing an exchange–correlation potential parametrization so that the
sum of the self-interaction from the Coulomb interaction and from the exchange–
correlation tends to cancel each other:
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Fig. 1 The difference between the GGA exchange–correlation and that of the LDA up to the
muffin-tin radii for gadolinium metal Gd. The spin-up part (in black) and the spin-down part (in
red)

U
[
nl,σ
]+ ECoulomb

[
nl,σ
] = 0, (48)

where l is the orbital quantum number and σ the spin. Although this approxi-
mation has led to improved total energy and charge density of light atoms and a
number of monovalent metallic atoms compared to the Hartree–Fock one, it has
not been able to provide a satisfactory result for molecules and solids with local-
ized orbitals. A powerful alternative is the so-called LDA(GGA)+U method, which
allows us not only to keep the LDA(GGA) potential but also to add the intra-atomic
Coulomb interaction, particularly inavoidable for strongly localized and correlated
electrons systems. The LDA(GGA)+U method are more efficient in removing the
self-interaction of localized orbitals.

3.7 The LDA(GGA)+U Method

The LDA+U method [42], which is a generalization of the Hubbard model
[43–46], is aimed to include the intra-atomic Coulomb interaction U in a mean-field
(MF) Hartree–Fock-like manner. The original idea of this method is to replace the
LDA exchange and correlation functional for localized orbitals by an intra-atomic
Coulomb potential. This leads to the partitioning of the electronic system into two
subsystems: the first subsystem of localized electrons d(f ) is treated like in the
Hartree–Fock approximation and has therefore no self-interaction; the second sub-
system is constituted of the rest of the electrons which are delocalized electrons
and is treated within the LSDA. Because of the involved localized orbitals (d or f )
it would be technically practical to use atomic-like orbitals as basis functions. The
linearized muffin-tin orbital method (LMTO) in the atomic-sphere approximation
[42] (ASA) or its full-potential version [47] has been the first method within which
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the LDA+U method was implemented. We present here the LDA+U implementation
within the FLAPW method as it has been described by Shick et al. [48] without
supplying details about the FLAPW method (the FLAPW method will be discussed
in the next section). The variational LDA+U total-energy functional takes the form

ELDA+U [nσ ] = ELDA [nσ ] + Eee [nσ ] − Edc [nσ ] , (49)

where ELDA [nσ ] is the standard LDA total energy functional, Eee [nσ ] is the
electron–electron interaction energy of the correlated orbitals.

Eee = 1

2

∑

σ,σ ′

∑

m1,m2,m3,m4

nσ
m1,m2

nσ ′
m3,m4

× [〈m1, m3|V ee|m2, m4〉 − 〈m1, m3|V ee|m4, m2〉δσ,σ ′
]
, (50)

which can be also written as [47]

Eee = 1

2

∑

σ

∑

m1,m2,m3,m4

〈m1, m3|V ee|m2, m4〉nσ
m1,m2

n−σ
m3,m4

+ [〈m1, m3|V ee|m2, m4〉 − 〈m1, m3|V ee|m4, m2〉
]

nσ
m1,m2

nσ
m3,m4

, (51)

where the occupation matrix of some localized orbitals is defined as

nσ
m2,m1

=
∑

i{occ}
〈ψσ

i |m1, σ 〉〈m2, σ |ψσ
i 〉, (52)

with ψσ
i the FLAPW wave function.

V ee = 1/|r1 − r2| is the interaction potential between two electrons. The inter-
action term between localized orbitals 〈m1, m3|V ee|m2, m4〉 can be given a simple
interpretation when (m1 = m2) and (m3 = m4). In this case 〈m1, m3|V ee|m1, m3〉
corresponds to the Coulomb interaction between localized orbitals with occupa-
tion nσ

m1,m1
and nσ

m3,m3
. In the case where (m1 = m4) and (m3 = m2), the term

〈m1, m3|V ee|m3, m1〉 represents the exchange energy of the same previous localized
orbitals nσ

m1,m1
, and n−σ

m3,m3
with electrons of opposite spin.

In terms of U and J matrices one obtains [49]

Eee = 1

2

∑

σ

∑

m1,m2,m3,m4

nσ
m1,m2

n−σ
m3,m4

Um1,m2,m3,m4

+ (Um1,m2,m3,m4 − Jm1,m2,m3,m4

)
nσ

m1,m2
nσ

m3,m4
. (53)
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Edc [nσ ] is the double counting term to subtract for the interaction already accounted
for, albeit incorrectly, in LDA (GGA):

Edc = U

2
n(n − 1) − J

2

∑

σ

nσ (nσ − 1), (54)

where nσ = T r (nσ
m1,m2

) and n =∑σ nσ .
The LDA+U potential which corresponds to the modified ELDA+U functional can

be expressed as

V LDA+U =
∑

σ

∑

m1,m2

|m1, σ 〉V σ
m1,m2

〈m2, σ |, (55)

where the potential matrix elements V σ
m1,m2

are defined as

V σ
m1,m2

= ∂ ELDA+U

∂nσ
m,m ′

= ∂ Eee

∂nσ
m,m ′

− ∂ Edc

∂nσ
m,m ′

. (56)

Using Eqs. (49), (50), and (54), Eq. (56) can be expressed as

V σ
m1,m2

=
∑

σ

∑

m3,m4

〈m1, m3|V ee|m2, m4〉n−σ
m3,m4

+ (〈m1, m3|V ee|m2, m4〉 − 〈m1, m3|V ee|m4, m2〉)nσ
m3,m4

− δm1,m2U (n − 1

2
) + δm1,m2 J (nσ − 1

2
).

(57)

According to Eq. (55) the expected value of V LDA+U is then

〈ψσ
i |V LDA+U |ψσ

i 〉 =
∑

m1,m2

V σ
m1,m2

nσ
m2,m1

. (58)

With the help of the variational principal, one can minimize the LDA+U total
energy functional (Eq. 49) with respect to ψσ

i :

[∇2 + V σ
LDA(r)

]
ψσ

i (r) +
∑

m1,m2

V σ
m1,m2

δnσ
m1,m2

δψσ
i

= eσ
i ψσ

i (r). (59)

This set of equations is that of the Kohn–Sham equations with an additional term
accounting for the U (LDA+U ) correction.

It is worth noticing that the present derivation of the LDA+U method (to which
we will refer to from now on as the LDA+U method) is rotationally invariant and
therefore independent of the quantization axis and hence of the crystal orientation.

Because LDA+U approach aimed at improving electron–electron interaction
within localized orbitals, it is natural to suppose atomic-like character of these
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orbitals with separation between angular and radial variables. Therefore the electron–
electron interaction term will read

〈m1, m2|V ee|m2, m4〉 =
∑

k

ak(m1, m2, m3, m4)Fk,

ak(m1, m2, m3, m4) = 4π

2k + 1

k∑

q=−k

〈lm1|Ykq |lm2〉〈lm3|Y ∗
kq |lm4〉, (60)

with separation between radial Slater integrals and angular ak integrals. In this
expression, Fk are the Slater integrals, |l, m〉 are d(f ) spherical harmonics, and ak

are related to the Gaunt coefficients through the complex spherical harmonics.
The on-site Coulomb and exchange interactions U , J are identified with the aver-

aged Coulomb and exchange interactions:

U = 1

(2l + 1)2

∑

m1,m3

〈m1, m3|V ee|m1, m3〉,

J = U − 1

2l(2l + 1)

∑

m1,m3

[〈m1, m3|V ee|m1, m3〉 − 〈m1, m3|V ee|m3, m1〉

= 1

2l(2l + 1)

∑

m1 �=m3,m3

〈m1, m3|V ee|m3, m1〉. (61)

Although this atomic formulation is appropriate and reliable to incorporate these
intra-atomic interactions, the electron–electron interaction (60) is unscreened and is
therefore overestimated.

Some attempts have been already made to compute U and J interactions using
ab initio approaches. The results obtained within the constrained LDA [50] cal-
culations have shown the difficulty of simulating the screening effect for 3d and
4 f system in solids and led to a too strong (for 3d metals) and to a too small
(for 4 f metals) intra-atomic interactions compared to that provided by experiment.
Recent developments in LDA+U approach, in particular in the calculation of the
U and J values by Pickett and Cococcioni [51, 52], suggested a constrained LDA
approach combined with linear response theory, where screening could be treated
more carefully. The obtained values for 3d metals are smaller and more consistent
with experiment.

It turns out that the most realistic way to get an estimation of these intra-atomic
interactions is to make use of the experimental spectra such as XPS (X-ray photoe-
mission spectroscopy) and BIS (Bremsstrahlung isochromat spectroscopy) spectra
to extract the U and J interactions and use them as input parameters for LDA+U
calculations.

Since the U and J parameters (the screened interactions) are known, the Slater
integrals can be calculated using Eq. (61);
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for d orbitals (l=2):

U = F0,

J = (F2 + F4)/14; F4/F2 = 5/8, (62)

for f orbitals (l=3):

U = F0,

J = (286F2 + 195F4 + 250F6)/6435;

F2/F4 = 675/451; F2/F6 = 2025/1001. (63)

Even though the conception of the LDA+U scheme parametrization (using U
and J as parameters) makes the ab initio DFT calculations lose its parameter-free
character, this method has provided a better understanding (compared to the LDA)
of the electronic structure of transition-metal oxides and Mott–Hubbard insulators
such as NiO and CoO [53–56]. We will show in the following chapters that the
LDA+U approach is also appropriate for describing electronic structure of corre-
lated 4 f rare-earth metals [57–59].

4 Relativistic Effects

4.1 Importance of Relativistic Effects

Non-relativistic or semi-relativistic Kohn and Sham density functional theory [1] is
extensively used to determine the band structure of materials, but it is insufficient in
explaining many properties related to optics and magnetism. Its local spin density
approximation (LSDA) which can calculate the magnetic properties can determine
neither the magnetic anisotropy nor the optical threshold of gold. As we can see
from Fig. 2, at the X high symmetry point in the Brillouin zone, the energy goes
from its non-relativistic value of −1.8 to −1.1 eV when the spin–orbit coupling
(SOC) is included, i.e., the highest occupied band gets much closer to the Fermi level
when the SOC is included. Therefore, without the SOC, the LSDA is incapable of
explaining the yellow color of gold [60]. The LSDA is also incapable of explaining
the Faraday effect, the Kerr or the x-ray circular magnetic dichroism. All the above
phenomena are due to relativistic effects, and precisely to the SOC. When the SOC
is included in the Hamiltonian the spin and orbital number are no longer principle
quantum numbers and only the total angular momentum is a good quantum number.
In the case of heavy metals, like gold, where the SOC is large, d-valence bands
are split into total angular momentum of 5/2 and 3/2. If the SOC is not very large,
like in the case of 3d transition metals, then valence bands are not much affected;
however, the SOC produces a small orbital moment (the orbital moment is no longer
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Fig. 2 Band structure of gold along some high symmetry directions including spin–orbit coupling
(red lines) and without it (black lines)

quenched). The SOC term, as it can be seen below, is proportional to the scalar
product of the spin moment and orbital moment, and thus aligns the spin magnetic
moment with respect to the crystal. This will explain the easy and hard axes.

To describe the relativistic effects we start from the Dirac equation using rel-
ativistic electrodynamics. For light atoms, we will treat relativistic effects using
perturbation theory. The standard technique is the use of the Foldy–Wouthuysen
[61] transformation which decouple the large and small components of the Dirac
wave function.

4.2 Dirac Equation

We will first derive the Dirac equation of a free particle and then that of a charged
particle in an external potential. The Klein–Gordan (K–G) equation for a free parti-
cle can be written as3

Pμ Pμ |Ψ〉 = m2 |Ψ〉 (64)

3 We use the atomic units � = c = 1 and Einstein notation Aμ Bμ = A0 B0 − A.B and A to
designate the quadrivector A = (A0,A)
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where Pμ Pμ = p2
0 − |p|2 = E2 − |p|2. Equation (64) is just the definition of the

total energy of a relativistic particle:

E =
√

|p|2 + m2

Using the spin-position representation, the correspondence principle gives

(
∂μ∂μ + m2

)
Ψ(r ) = 0 = (

∂2

∂t2
− ∇2 + m2)Ψ(r). (65)

The problem with the K–G equation is that it doesn’t have a probabilistic
interpretation [62].4 To find an equation with a probabilistic interpretation, Dirac
replaced the K–G equation by an equation with first-order derivative in space and
time, analogous to Schrödinger’s equation. This last equation is covariant and of
first order with respect to the momentum operator:

� P |Ψ〉 = m |Ψ〉 = γ μ Pμ |Ψ〉 , (66)

where � P is the slash momentum operator using the Feynman slash notation and
where the matrices γμ are related to the Pauli matrices.

One has to find the energy of the relativistic free particle (E2 = P2
0 = P2 + m2).

This implies that the matrices γ μ verify the following equality:

(γ μγ ν + γ νγ μ) = 2gμν, (67)

where gμν is the Lorentz metric tensor, whose signature in a Galilean reference
frame is (+ − −−). We can write the Dirac equation, using the spin-position repre-
sentation as

(
iγ μ∂μ − m

)
Ψ(r) = 0. (68)

We find an analogous equation to that of Schrödinger:

i∂0Ψ(r ) = (γ 0γ i∂i + mγ 0)Ψ(r) = (α.P + mβ)Ψ(r ). (69)

4 Since this equation is of second order and that Ψ(r ) and its temporal derivative are independent, it
is not sure whether the first component of the current quadrivector Jμ obtained from this equation
is positive definite at a later time. The first component of the current quadrivector Jμ is given by

Jμ(r ) = 1

2mi�
(Ψ∗(r )∂μΨ(r ) − (∂μΨ∗(r ))Ψ(r )).
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The Dirac Hamiltonian HD is then defined by

HD = α.P + mβ, (70)

αi = γ 0γ i ,

β = γ 0.

(71)

For the Dirac Hamiltonian HD to have a probabilistic interpretation, it has to be
Hermitian. In the spin-position representation of a particle of spin 1/2, the wave
function |Ψ〉 is a quadrispinor, having two spinors analogous to that of Pauli |ϕ〉 of
a particle, whereas |χ〉 is that of the antiparticle5

|Ψ〉 =
( |ϕ〉

|χ〉
)

(72)

In this representation the matrices γ μ can be written as

γ 0 =
(

1 0
0 −1

)
,

γ 1 =
(

0 σx

σx 0

)
,

γ 2 =
(

0 σy

σy 0

)
,

γ 3 =
(

0 σz

σz 0

)
,

(73)

and the Dirac equation can be written as

(i∂0 − m)ϕ(r) = σ .pχ (r ),

(−i∂0 − m)χ (r) = σ .pϕ(r ).
(74)

As before, we write the Dirac equation for a charged particle in external potential,
by replacing the quadrivector energy–momentum by the momentum quadrivector:

πμ = Pμ − eAμ, (75)

5 In the Dirac equation the energy has no lower limit, where it was necessary to introduce the
notion of antiparticle
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where Aμ is the quadrivector potential. The Dirac Hamiltonian becomes

HD = α.(P − eA) + mβ + eV . (76)

As for the free-particle equation within the spin-position representation, we find

(i∂0 − m − eV ) ϕ(r ) = σ .(p − eA(r))χ (r),

(−i∂0 − m + eV ) χ (r ) = σ .(p − eA(r ))ϕ(r).
(77)

4.3 The Foldy–Wouthuysen Transformation and the Spin–Orbit
Coupling

As we have seen in Eqs. (74) and (77), the two components of the wave function are
coupled. This is due to the fact that the γ μ matrices are not diagonals in the spin-
position representation and consequently the Hamiltonian is not bloc diagonal in this
representation. We search for a representation where the Hamiltonian is diagonal
[61]. For that Foldy–Wouthuysen used a unitary transformation U :

U (r ) = ei S(r ), (78)

where S is Hermitian.
It can be shown then that the Foldy–Wouthuysen Hamiltonian becomes

HFW = β
(

m + (p−eA)2

2m

)
+ eV − e

2m βσ .B − ie
8m2 σ .(∇ ∧ E )

− e
4m2 σ .(E ∧ p) − e

8m2 ∇.E + o
(

1
m2

)
.

(79)

If the potential has a spherical symmetry, we obtain

∇V (r ) = 1

r

∂V

∂r
r, (80)

and as a consequence

− e

4m2
σ .(E ∧ p) = e

4m2

1

r

dV

dr
σ .L. (81)

We find the SOC term and the Darwin correction term. Using the fact that
E = −∇V , the Foldy–Wouthuysen Hamiltonian becomes

HFW = β

(
m + (p − eA)2

2m

)
+ eV − e

2m
σ .B − e

4m2
σ

dV

dr
.L − e

8m2
ΔV . (82)
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Notice, since the Foldy–Wouthuysen Hamiltonian contains the SOC term, neither
the spin nor the momentum is a constant of motion since

[HFW, Lz] = − [HFW, Sz] = iζ (r )
(
σx L y − σy Lx

) �= 0, (83)

with

ζ (r ) = e

4m2

1

r

dV

dr
.

This Hamiltonian, however, commutes with the sum Jz = σz + Lz ; consequently
the ensemble

{
H, J 2, Jz

}
constitutes a complete ensemble of commuting operators

and possess, therefore, a common eigenvector which we define as |J M〉. Using the
addition of angular momentum theorem we find

|J M〉 =
∑

m=± 1
2

〈L , M − m; S, m | J M〉 |L , M − m; S, m〉, (84)

where 〈L , M − m; S, m | J M〉 are the Clebsch–Gordan coefficients. We can also
define the K operator as

K = β(σ .L + 1) (85)

which commutes with H , J 2, and Jz and with the inversion operator P = iγ0. We
find that

K 2 = J 2 + 1

4
. (86)

The eigenvalues of K 2 are given by

κ = ±
(

j + 1

2

)
. (87)

Dirac equation for a spin-dependent potential: The treatment of the magnetic
materials within a completely relativistic theory has been discussed in the literature
[63, 4]. Analogous to the non-relativistic theory, we can describe the fundamental
state of many relativistic electrons. The approach leads to a current functional the-
ory where the quadrivector current Jμ is the central quantity. The corresponding
Hamiltonian has the following form:

H = α.
[
p + AH ( jμ) + Axc( jμ)

]+ 1

2
(β − I ) + VH + Vxc. (88)

The H , xc indices represent the Hartree and the exchange–correlation to the the
scalar potential V (r ) and vector potential A. Because of the numerical difficulties,
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an alternative approach was suggested, analogous to the local spin density approx-
imation (LSDA) for the non-relativistic theory. We assume an interaction of the
spins of the electrons with a hypothetical field of magnetic or exchange–correlation
origin:

H = −iα.∇ + 1

2
(β − I ) + V (r ), (89)

with a periodic potential V of the following form:

V (r ) = VH (r ) + Vxc(r ) + Vspin(r ), (90)

with

Vspin(r ) = βσ .

(
B ext + ∂ Exc

∂m(r )

)
. (91)

4.4 Solution of the Dirac Equation

4.4.1 Wave Equation in Polar Coordinates

To determine the wave equation in polar coordinates, we consider a stationary state
of energy W in a central potential V (r ) and we transform the term of the kinetic
energy α.p . For this we will use the following identity [62]:

∇ = ur (ur .∇) − ur ∧ (ur ∧ ∇) = ur
∂

∂r
− i

ur

r
∧ L, (92)

where L is the angular momentum, ur the radial unitary vector. From this equation,
the kinetic energy operator becomes

α.p = −αr
∂

∂r
+ i

αr

r
σ .L. (93)

This equation can be substituted in the wave equation and using the K operator
defined by Eq. (85) we obtain

WΨ = HΨ =
[

iγ 5σr

(
∂

∂r
+ 1

r
− β

r
K

)
+ V + β

]
Ψ, (94)

with γ 5 = iγ 0γ 1γ 2γ 3. Thus we obtain a wave equation in polar coordinates.
From the fact that J 2, Jz , and K commutes with V (r ), these three operators

commute with H . We will be interested by a representationwhich diagonalizes these
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three operators and H. The eigenvalues of J 2, Jz , and K are, respectively, j( j + 1),
μ, and κ . As we have mention it in Eq. (72) Ψ can be written as:

Ψ(r ) =
(

ψμ(r )
ψ l(r )

)
. (95)

We have

(σ .L + 1)ψμ = −κψμ, (96)

(σ .L + 1)ψ l = κψ l, (97)

J 2ψμ,l = j( j + 1)ψμ,l, (98)

Jzψ
μ,l = μψμ,l , (99)

where ψμ,l are a two component spinors and are, respectively, proportional to χμ
κ

and χ
μ
−κ . We therefore can write

ΨΛ = Ψμ
κ =
(

g(r )χμ
κ

i f (r )χμ
−κ

)
, (100)

where

χμ
κ =
∑

ms

Cκ,μ

l,μ−ms ;S,ms
Y μ−ms

l χms , (101)

and Cκ,μ

l,μ−ms ;S,ms
are the Clebsch–Gordan coefficients and χms Pauli spinors, and g(r )

and f (r ) are the radial functions which depend on κ . The phase i is there to make
f and g explicitly real. We obtain the following equations:

(W − V − 1)g(r )χμ
κ =
[
−
(

∂ f (r )

∂r
+ f (r )

r

)
+ κ

f (r )

r

]
χμ

κ , (102)

(W − V − 1) f (r )χμ
−κ =

[
∂g(r )

∂r
+ g(r )

r
+ κ

g(r )

r

]
χ

μ
−κ , (103)

where σrχ
μ
κ = −χ

μ
−κ is used. These last equations give the final radial equations:

∂g(r )

∂r
= (W − V + 1) f (r ) − (κ + 1)

g(r )

r
, (104)
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∂ f (r )

∂r
= (κ − 1)

g(r )

r
− (W − V − 1)g(r ). (105)

It often helpful to use ξ1 = rg(r ) and ξ2 = r f (r ). We obtain the equivalent
following radial equations:

d

dr

(
ξ1

ξ2

)
=
(− κ

r W + 1 − V
−(W − 1 − V ) κ

r

)(
ξ1

ξ2

)
, (106)

{
d2

dr2
+ dV/dr

W − V + 1

d

dr
+
[

(W − V )2 − 1 − κ(κ + 1)

r2
+ κ

r

dV/dr

W − V + 1

]}
ξ1(r )= 0.

(107)
These equations are solved numerically, and we obtain the solution of the Dirac

equation in the spherical region. In the first appendix we will give some details about
the use of spin–orbit coupling in the FLAW formalism.

5 The FLAPW Method

5.1 Introduction

Before introducing the full-potential linear augmented plane wave (FLAPW)
method, we would like to give a brief overview of ab initio methods. Several meth-
ods have been developed to solve the Kohn–Sham (KS) equations. The idea of
dividing the space into spheres centered at each atom site, the so-called muffun-
tin (MT) regions or augmentation region, and the remaining interstitial region was
already proposed by Slater [64–66] before the KS equations. The concept of this
division for a periodic potential corresponds to the Augmented Plane Wave (APW)
technique. Soon after, this concept has been adopted by the Korringa [67], Kohn, and
Rostoker [68] (KKR) to develop the so-called Green’s function KKR method. The
APW method, as all the others MT orbital-based methods, has known some deficien-
cies. The most problematic is that of the non linearity of the eigenvalue equations
with respect to the energy. Other methods, such as the orthogonalized plane wave
(OPW) method [69] and the linear combination of atomic orbitals (LCAO) method
[7], which are quite similar to the APW method,6 have been successful due to their
accurate calculations of particular crystals. The applications of the OPW method,
however, have been limited primarily to nearly free-electron (NFE) crystals. The
reasons for that can be summarized in two points. The first one is that this method
requires the electrons in the crystal to be separated into core and itinerant electrons,

6 Terrell has shown that the APW method gives nearly the same results as the OPW method for the
Be metal [70].
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and all the non-overlapping atomic states with the neighboring lattice site states are
considered as core states, so that the d-states, for example, will be considered as
such.7 The second one is that the OPW method is more difficult to apply to heavy
elements since they have more core electron states. Therefore orthogonalizing a
plane wave function8 to these states requires more efforts. The complications of
the OPW method had stimulated, at that time, the development of the actually used
pseudopotential methods.

In the APW method, all that is required is the total electronic charge density
based on atomic self-consistent calculations.

Some years later Andersen [71] succeeded in linearizing these eigenvalue equa-
tions within the same muffin-tin (MT) model, which thus has given rise to both
the linear muffin-tin orbitals (LMTO) method and the linear augmented plane wave
(LAPW) method.

One of the commonly used methods to solve the Kohn–Sham equations is to use
some kind of basis set to represent the Bloch wave functions. A suitable basis-set
choice suggested by Bloch’s theorem is a sum of plane waves. They have several
advantages: the implementation of the plane waves-based methods is rather straight-
forward because of their simplicity; they are orthogonal and diagonal in momentum.
The only problem which arises from this representation is that it requires so many
plane waves to account for the fast varying electron wave functions near the core. To
overcome this problem with only a few basis functions, one can use a basis set which
contains radial wave functions to describe the oscillations near the core. This is the
suggested fundamental idea by Slater [64] for the augmented plane wave (APW)
method.

5.2 The APW Concept

Within the APW approach, space is divided into spheres centered at each atom site
(the MT spheres), and the remaining region is the interstitial region (IR). These
regions can be seen in Fig. 3. Inside the MT spheres the potential is of spherical
symmetry, and the interstitial potential is constant. The single-particle wave func-
tion ψn(k, r), which describes the physics within such environment, is therefore
expressed in terms of the following basis functions:

7 The problem which we would like to notice here is that though the d-states are relatively narrow
and do not overlap with the other states, they are still far from being considered as frozen core
states.
8 The OPW basis functions are constructed by orthogonalizing plane waves to the core states. The
resulting OPW’s have nodal character in the core region but are essentially plane waves in the outer
part.
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Fig. 3 (a) A typical form of a based APW potential, (b) The representation of space into MT and
interstitial region

ϕG(k, r) =
{

ei(G+k)r IR∑
lm AμG

lm (k)ul(r )Ylm(r̂) MT μ.
(108)

Thus, the wave function takes the form

ψn(k, r) =
∑

G

CG
nkϕG(k, r)

=
{∑

G CG
nkei(G+k)r IR∑

G

∑
lm CG

nk Aμ

lm(k + G)ul(r )Ylm(r̂) MT,
(109)

where k is the Bloch wave vector, G is the reciprocal lattice vector, l and m are the
angular quantum numbers, and ul is the radial solution of the Schrödinger equation
for a given energy El solved for the MT sphere located at τμ in the unit cell:

{
− �

2

2m

∂2

∂r2 + �
2

2m

l(l + 1)

r2
+ V (r ) − El

}
rul(r ) = 0, (110)

where V (r ) is the spherical component of the potential. Since the ul functions
account for the regular solutions, the basis functions inside the spheres should form
a completely orthogonal basis set and the ul functions should be orthonormal. Using
the Rayleigh expression

ei(k+G)r = 4π
∑

lm

i l jl (|k + G||r|)Y ∗
lm(k̂ + G)Ylm(r̂), (111)
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and the continuity of the wave functions at the boundary of the MT spheres deter-
mine the Aμ

lm(k + G) coefficients according to

Aμ

lm(k + G) = 4π i l

ul(Rμ)
exp(i(k + G)τμ) jl(|k + G||Rμ|)Y∗

lm(k̂ + G), (112)

where Rμ is the MT radius of sphere μ.
The eigenvalue problem has the following form:

Ĥψn(k, r) = εnkψn(k, r), (113)

where n is the band index.
Even though plane waves form an orthogonal basis set, the APW functions do

not. The plane waves in the interstitial region are non-orthogonal, because the MT
regions are cut-out and, therefore, the integration over r space (in terms of which
the orthogonality is defined) is not carried out over the whole unit cell but only over
the interstitial region. An additional contribution comes from the MT regions, this
is the so-called augmented contribution, which somehow, makes the plane waves
coupled to the MT functions (ul(r )Ylm(r̂ )).
Due to the non-orthogonality of the basis functions the overlap matrix S

SG,G′
(k) =

∫
ϕG′(k, r)ϕG(k, r)d3r, (114)

is not diagonal.
Using the wave function expansion (109), the eigenvalue problem (113) can be

rewritten in its generalized form as:

(H(k) − ενkS(k))Cνk = 0 ∀k ∈ BZ. (115)

Within the APW method, the El parameters are mapped to the real-band energies
ενk; thus the ul solutions become the functions of these band energies ul(r, ενk), and
Eq. (115) is therefore nonlinear in energy,9 so it can no longer be determined by a
simple diagonalization. One way of solving this problem is to fix the energy El and
scan over k to find the solution ul(ενk), which corresponds to the optimal shape of
the band energies ενk, instead of diagonalizing a matrix to find all the bands at a
given k. The Slater’s formulation of the secular equation is, thus, computationally
much more demanding than an ordinary linear one.

Another limitation of the APW method (known as the asymptote problem) is that
of the zero value of ul (R) at the MT boundary in Eq. (112). The AμG

lm ’s are no longer
finite, and the radial function and the plane wave become decoupled. Further details
about the APW method can be found in the book by Loucks [72].

9 The Hamiltonian matrix H depends not only on k but also on ενk, H(ενk).
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These problems are circumvented within the LAPW method proposed by
Andersen [71]. The following section is devoted to the discussion of the main fea-
tures of this method which will be necessary to follow the calculation of the XMCD
matrix elements. Further details of the methods can be found in the article of Bluegel
and Bihlmayer [73].

5.3 The LAPW Method

The basic idea of the linearized version of the APW (LAPW) is to expand the ul

functions into a Taylor-series around the El energy parameter

ul (ε, r ) = ul(El, r ) + u̇l (El, r )(ε − El) + O[(ε − El)
2], (116)

where the u̇l denotes the energy derivative of ul , ∂ul(ε, r )/∂ε, and O[(ε − El)2]
denotes errors that are quadratic in energy. Therefore, according to the variational
principle the error in the calculated band energies is of order (ε − El)4. Because of
this high order, the linearization works well even over a rather broad energy region.

With this linearization, the explicit form of the basis functions is now as
following:

ϕG(k, r) =
{

ei(G+k)r IR∑
lm(AμG

lm (k)ul(r ) + BμG
lm (k)u̇l(r ))Ylm(r̂) MT μ.

(117)

The values of the coefficients AμG
lm (k) and BμG

lm (k) are determined by insuring the
continuity of the basis functions and their derivatives at the MT boundary (a detailed
description of these coefficients will be provided in the following sections). The
energy dependence of the Hamiltonian is therefore removed, which reduces the
energy search given by Eq. (115) to a standard eigenvalue problem of linear algebra.
This is a direct consequence of the disappearance of the discontinuity in the basis
function derivatives (encountered in the APW method).

Taking the energy derivative of Eq. (110):

{
− �

2

2m

∂2

∂r2 + �
2

2m

l(l + 1)

r2
+ V (r ) − El

}
r u̇l(r ) = rul(r ), (118)

where the u̇l can be calculated as a solution of a Schrödinger-like equation. The El

is fixed energy for each MT orbital and is chosen to minimize the errors due to the
linearization of the wave function. For that this energy is chosen at the center of
gravity of the occupied canonical band [74].

Since it is no longer necessary to set the energy parameters equal to the band
energies, the latter can be determined by a single diagonalization of the Hamiltonian
matrix (Eq. 115).
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In order to simplify the calculation of the elements of the Hamiltonian matrix,
the normalization of ul is required

∫ RMT

0
u2

l (r )r2dr = 1, (119)

which implies that the energy derivatives of ul , u̇l(r ) are orthogonal to the radial
functions, i.e.,

∫ RMT

0
ul (r )u̇l(r )r2dr = 0. (120)

Once the ul and u̇l are made orthogonal, the basis functions inside the spheres
form a completely orthogonal basis set, since the angular functions Ylm(r̂ ) are also
orthogonal. However, the LAPW functions are, in general, not orthogonal to the
core states, which are treated separately in the LAPW method.

In some materials the high-lying core states, the so-called semicore states, pose
a problem to LAPW calculations: they are too delocalized to be described as core
states and too deep in energy to be described as valence or conduction states. One
of the strategies to overcome this problem is the use of local orbitals [75]. The
local orbitals are an extension to the FLAPW basis that can be used to improve
the representation of the semicore states. The extra basis functions are completely
localized inside the MT spheres, and their values and derivatives fall to zero at the
MT radii.10 This can be achieved via a linear combination including three radial
functions. The standard FLAPW functions ul and u̇l plus a further radial function
ullo , where llo is the quantum number l for local orbitals. This new radial function
is constructed in the same way as ul , but with different energy parameter Ello . A
detailed discussion of these problems can be found in the book by Singh [76] and a
good review is given in [73].

Given that the LAPW basis set offers enough variational freedom, its extension
to non-spherical potentials could be done with little difficulty. This leads then to the
full-potential linearized augmented plane wave method (FLAPW).

6 The FLAPW Concept

In the full-potential LAPW method (FLAPW) [77, 78] the full-potential and charge
density without are calculated without any shape approximation in the interstitial
region and inside the muffin-tins:

10 That is why no additional boundary conditions has to be satisfied.
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V (r) =
{∑

G V G
I eiGr IR∑

lm V l,m
MT (r )Ylm(r̂) MT,

(121)

the charge density, ρ(r), is represented in the same way as the potential:

ρ(r) =
{∑

G ρG
I eiGr IR∑

lm ρ
l,m
MT (r )Ylm(r̂) MT μ

(122)

We have to mention here that though the potential is nearly constant in the inter-
stitial region in most materials, it is not necessarily true for the open systems or for
systems with small packing factor.

It turns out that on contrary to the methods using the atomic-sphere approxima-
tion (ASA) [71], the FLAPW method accounts for the most realistic potential and
leads, therefore, to a realistic distribution of the charge density within the whole
space. In other words, within the FLAPW scheme the charge density is sensitive to
the slightest variation of the potential in the whole space.

As other density functional theory-based codes, the first-principles FLAPW
(Fleur code [79]) method is implemented according to a typical self-consistent loop
(Fig. 4). We provide in the following sections the features of the main steps of a
bulk calculation.

Atomic charge densities for each atom in the system
Input of atomic positions {R}
Input of initial magnetic moments

compute the effective potential out of the charge
densities and atomic positions.

compute the output charge density n(r)

mix the charge densities of the
revious iterations

N
ew
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Is the charge
density converged?

Calculate the Fermi level EF 

compute the total energy and forces
and check if forces on the atoms are zeros.
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Solve the Kohn−Sham equations for each k point
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s

outputs

<Hk> − Ek<Ok> = 0

Fig. 4 Typical loop structure of a first-principles code based on density functional theory
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6.1 Construction of the Potential

The total potential consists of two parts, the Coulomb potential and the exchange–
correlation potential. The Coulomb potential is composed of the Hartree potential
VH (r) and the external potential of the nuclei Vi (r):

Vc(r) = VH (r) + Vi (r). (123)

Once an initial charge density n0(r) (atomic charge) and atom positions (R) are
given, the Hartree potential can be determined from the charge density via the Pois-
son equation:

�VH (r) = 4πn(r), (124)

in real space the solution of Eq. (124) is given by

VH (r) =
∫

n(r)

|r − r′|d3r. (125)

In reciprocal space, however, the Poisson equation is diagonal:

VH (G) = 4πG2. (126)

Therefore, and because of the representation of the charge density and the poten-
tial in the interstitial region, the solution of the Poisson equation in reciprocal space
appears to be convenient. However, due to the rather localized core and valence
states the charge density changes on a very small length scale near the nuclei (the
MT region). Thus, the plane wave expansion of n converges slowly, and a direct use
of Eq. (126) is impractical. The pseudocharge method [80] is used to circumvent
this difficulty.

The problem of determinating the exchange–correlation potential is quite differ-
ent from that of the Coulomb potential, V σ

xc is a local quantity and depends only
on n↑(r) and n↓(r) at the same position r. Thus, the MT and the interstitial region
can be treated independently. Furthermore, V σ

xc and εσ
xc are nonlinear functions of n↑

and n↓ and have to be calculated in real space. First, n↑ and n↓ are transformed to
the real space, where V σ

xc and εσ
xc are calculated,11 and then back-transformed. The

potential V σ
xc is then added to the Coulomb potential, yielding the spin-dependent

potential V↑ and V↓, whereas εσ
xc is needed for the determination of the total energy.

11 As it was explained in Sects. (3.5) and 3.6, V σ
xc and εσ

xc are calculated using either the LDA or
the GGA.
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6.2 The LDA(GGA)+U Approach Within the FLAPW

The LDA(GGA)+U implementation within the FLAPW method follows the same
logic as explained in Sect. 3.7. The variational LDA(GGA)+U Schrödinger equa-
tions are those of Eq. (59):

[∇2 + V σ
LDA(r)

]
ψσ

k,ν(r) +
∑

m1,m2

V σ
m1,m2

δnσ
m1,m2

δψσ
k,ν

= εσ
k,νψ

σ
k,ν(r), (127)

where V σ
LDA(r) is the LSDA or the GGA potential calculated using the LDA(GGA)+U

charge density:

nσ
m1m2

=
∑

k,ν

w(ν, k)
[
Alm1 (k)A∗

lm2
(k) + 〈u̇σ

l |u̇σ
l 〉Blm1 (k)B∗

lm2
(k)
]
, (128)

where Alm(k) = 〈uσ
l Ylm |ψσ

k,ν〉 and Blm(k) = 〈u̇σ
l Ylm |ψσ

k,ν〉 and (cf. Eq. (57)):

V σ
m1,m2

=
σ ′∑

m3,m4

(〈m1, m3|V ee|m2, m4〉 − 〈m1, m3|V ee|m2, m4〉δσ,σ ′ )n−σ ′
m3,m4

− δm1,m2U

(
n − 1

2

)
+ δm1,m2 J

(
nσ − 1

2

)
.

(129)

The last term of the variational Hamiltonian is calculated from Eq. (128):

δnσ
m1,m2

δψσ
k,ν

= 〈ψσ
k,ν |uσ

l Ylm2〉uσ
l Ylm1 + 〈u̇σ

l |u̇σ
l 〉〈ψσ

k,ν |u̇σ
l Ylm2〉u̇σ

l Ylm1

= [|uσ
l Ylm1〉〈uσ

l Ylm2 | + 〈u̇σ
l |u̇σ

l 〉|u̇σ
l Ylm1〉〈u̇σ

l Ylm2 |
]
ψσ

k,ν . (130)

The U intra-atomic Coulomb interaction and the J exchange interaction can be
calculated according to Eq. (61) within an unscreened atomic formulation. Within
the Fleur implementation [79], these interactions are considered as parameters, and
they are usually extracted from experimental results.

7 Spin–Orbit Coupling and Magnetic Anisotropy

In a ferromagnetic material, below the Curie temperature, the total energy depends
on the orientation of the magnetization. This is usually what is meant by the mag-
netocrystalline anisotropy in the literature. Two principle magnetic mechanisms are
responsible for such phenomena. One is of classical origin and relies in the mul-
tipole (mainly dipole) interaction between the moments localized at lattice points
[81–83]. The second one is related to the orientation of the spin axis and is of pure
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relativistic character appearing only when the spin–orbit interaction is taken into
account [84]. The spin–orbit coupling (SOC) provides the mechanism that couples
the spin moment to the crystal generating thereby a dependence of the energy from
the spin axis.

7.1 The Kohn–Sham–Dirac Equation

Relativistic effects are important for the correct description of core or valence elec-
trons. Both core and valence electrons have finite wave functions near the nucleus,
where the kinetic energy is large. This kinetic energy becomes more significant for
heavier elements and compounds. Additionally, only relativistic effects, in particular
the spin–orbit coupling, introduce a link between spatial and spin coordinates. Thus,
information about the orientation of spins relative to the lattice can only be gained
if relativity is taken into account. For fully relativistic description of the electronic
structure, all relativistic effects, i.e., mass-velocity, Darwin-term, spin–orbit cou-
pling, have to be taken into account [85]. However, in many applications an approx-
imation is used, where the spin–orbit coupling is neglected. This approximation
is called the scalar relativistic approximation. It consists in including the spin–orbit
interaction additionally,12 either self-consistently or with the use of Andersen’s force
theorem [86].

In a relativistic density functional theory, the Kohn–Sham equations have the
form of a single-particle Dirac equation

{cα.p + (β − 1)mc2 + Vef f (r)}Ψ = EΨ, (131)

α =
((

0 σx

σx 0

)
,

(
0 σy

σy 0

)
,

(
0 σz

σz 0

))tr

=
(

0 σ

σ 0

)
, (132)

β =
(

I2 0
0 −I2

)
. (133)

σx , σy , and σz are the three components of the Pauli matrix vector σ , p is the
momentum operator, and In is the (n × n) unit matrix. Veff is the effective potential
that contains electron–nucleon Coulomb potential, Hartree potential, and exchange–
correlation potential. In the case of spin polarization, Veff is spin dependent. Finally,
Ψ is the relativistic four component wave function. The straightforward way to solve
this problem would be to expand each of the four components of Ψ in terms of the
FLAPW basis. However, if all four components were treated with the same accuracy,

12 This is known as the second variational scheme.
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this would result in a basis set which contains four times as many functions as in
the non-relativistic (non-magnetic) case. Since the numerical effort of the Hamilto-
nian diagonalization scales with the dimension of the matrix to the third power, the
computing time needed for the diagonalization increases by a factor of 64.

The FLAPW implementation within the Fleur code [79] introduces some approx-
imations to make relativistic calculations more efficient. One of these approxima-
tions is the scalar relativistic approximations, which has been suggested by Koelling
and Harmon [87], where the spin–orbit term is neglected, and spin and spatial coor-
dinates become decoupled. Hence, the Hamiltonian matrix reduces to two matrices
of half the size, which can be diagonalized separately. This saves a factor of four
in computing time. The scalar relativistic approximation will be discussed in more
detailed in the next section. It should be noted that relativistic effects are only signif-
icant close to the nucleus, where the kinetic energy is large. It is therefore reasonable
to treat the interstitial region non-relativistically. Thus, merely within the muffin-tin
spheres the electrons are treated relativistically. And only the large component of
Ψ is matched to the non-relativistic wave functions at the boundary between the
muffin-tins and the interstitial region, because the small component is already neg-
ligible at this distance from the nucleus. The small component is attached to the
large component and cannot be varied independently. However, this is somewhat
a sensible approximation for two reasons: First even inside the muffin-tin sphere
the large component is still much bigger than the small component and plays an
important role and second the two components are determined by solving the scalar
relativistic equations for the spherically averaged potential. Therefore, they are very
well suited to describe the wave functions.

Hence, the size of the basis set and the Hamiltonian matrix remain the same as in
non-relativistic calculations, but the problem has to be solved twice, once for each
direction of spin. This numerical effort is equal to that needed in spin-polarized
non-relativistic calculations.

7.2 The Scalar Relativistic Approximation

As it was pointed out in the previous section, the electrons are only treated relativisti-
cally inside the muffin-tin spheres. Thus the first problem that has to be addressed is
the construction of the radial function. This is done by solving the scalar relativistic
equation, including only the spherically averaged part of the potential. The starting
point is the following Dirac equation:

{cα.p + (β − 1)mc2 + V (r)}Ψ = EΨ. (134)

The solution of Eq. (134) is discussed in many textbooks, e.g., E.M. Rose [62].
Due to the spin–orbit coupling ml and ms are not good numbers any more, and
they have to be replaced by the quantum numbers κ and μ (or j and μ), which are
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eigenvalues of the operators K and the z-component of the total angular momentum.
The operator K is defined by

K = β(σ .l + 1). (135)

The solution of Eq. (134) has the following form

Ψ = Ψκμ =
(

gκ (r )χκμ

i fκ (r )χ−κμ

)
, (136)

where gκ (r ) is the large component, fκ (r ) is the small component, χκμ and χ−κμ

are spin angular functions, which are eigenfunctions of j2, jz , K with eigenvalues
j( j+1), μ, κ , respectively. The spin angular functions can be expanded into a sum of
products of spherical harmonics and Pauli spinors, where the expansion coefficients
are the Clebsch–Gordan coefficients. The radial functions have to satisfy the set of
coupled equations:

( − κ+1
r − ∂

∂r 2Mc
1
c (V (r ) − E) κ−1

r − ∂
∂r

)(
gκ (r )
fκ (r )

)
= 0, (137)

with

M = m + 1

2c2
(E − V (r )). (138)

To derive the scalar relativistic approximation, Koelling and Harmon [87] have
introduced the following transformation:

(
gκ (r )
φκ (r )

)
=
(

1 0
1

2Mc
κ+1

r 1

)(
gκ (r )
fκ (r )

)
. (139)

Using this transformation, Eq. (137) becomes

( − ∂
∂r 2Mc

1
2Mc

l(l+1)
r2 + 1

c (V (r ) − E) + κ+1
r

M ′
2M2c − 2

r − ∂
∂r

)(
gκ (r )
φκ (r )

)
= 0, (140)

where M ′ denotes the radial derivative of M ( ∂ M
∂r ), and the identity κ(κ+1) = l(l+1)

has been used. Since κ is the eigenvalue of K = β(σ .l + 1), the term (κ+1)M ′
2M2cr can

be identified as the spin–orbit term. This term is dropped in the scalar relativistic
approximation, because it is the only one, that causes coupling of spin-up and spin-
down contributions.

The radial functions gl(r ) and φl(r ) (the index κ has been replaced by l) can now
be calculated from the following differential equations:
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∂

∂r
gl(r ) = 2Mcφl (r ), (141)

∂

∂r
φl(r ) =

(
1

2Mc

l(l + 1)

r2
+ 1

c
(V (r ) − E)

)
gl(r ) − 2

r
φl(r ). (142)

The energy derivative of these equations yields straightforwardly a set of equa-
tions for ġl(r ) and φ̇l(r ), which are the relativistic analog of u̇l(r ). For numer-
ical reasons the functions gl(r ) and φl(r ) are replaced by pl(r ) = rgl(r ) and
ql (r ) = crφl(r ).

7.3 The Spin–Orbit Coupling Implementation Within the FLAPW

In the present Fleur code implementation [79] of the FLAPW method the relativistic
radial wave functions are normalized according to

〈(
gl(r )
φl(r )

)∣∣∣∣

(
gl(r )
φl(r )

)〉
=
∫ RMT

0
(g2

l (r ) + φ2
l (r ))r2dr = 1. (143)

The energy derivatives of the radial functions have to be made orthogonal to the
radial functions:

〈(
gl(r )
φl(r )

)∣∣∣∣

(
ġl(r )
φ̇l(r )

)〉
= 0. (144)

So that the scalar relativistic FLAPW basis set takes the form

ϕG(k, r) =
⎧
⎨

⎩

ei(G+k)r IR
∑

lm

(
AμG

lm (k)

(
gl(r )
φl(r )

)
+ BμG

lm (k)

(
ġl(r )
φ̇l(r )

))
Ylm(r̂) MT μ,

(145)
which is too similar to that of a non-relativistic basis set (Eq. 117).

Note that the Pauli spinors have been omitted, since the spin-up and spin-down
problems are solved independently within the scalar relativistic approximation.
Ignoring the spin–orbit coupling term in Eq. (140) the scalar relativistic Hamiltonian
including only the spherically averaged part of the potential can be expressed as

Hsp

(
gl(r )
φl(r )

)
= E

(
gl(r )
φl(r )

)
, (146)

with

Hsp =
(

1
2M

l(l+1)
r2 + V (r ) − 2c

r − c ∂
∂r

c ∂
∂r −2mc2 + V (r )

)
. (147)
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Thus, the Hamiltonian will be set up and diagonalized in a manner similar to that
of non-relativistic one.

In a second step, the spin–orbit coupling is calculated according to the following
relation:

V̂so(r ) = 1

2m2c2

�

2

1

r

dV

dr
L.σ =

(
V̂ ↑↑

so V̂ ↑↓
so

V̂ ↓↑
so V̂ ↓↓

so

)
. (148)

Therefore, the spin–orbit coupling of the two-spin channels is related to the
unperturbed potential13 via the angular momentum operator L and the Pauli spin
matrix σ .

The 2 x 2 matrix form is written in spinor basis. The two-spin directions are
denoted with ↑ and ↓. The derivation of the spin–orbit coupling angular part L.σ is
supplied in Appendix.

Finally the scalar relativistic Hamiltonian matrix elements will be constructed as

Hσ,σ ′
ν,ν ′ (k) = εν(k)δν,ν ′δσ,σ ′ + 〈ψν(k, r)

∣∣V̂so

∣∣ψν ′ (k, r)
〉
, (149)

where the corresponding eigenfunctions are of the form

Ψn(k, r) =
∑

ν,σ

aσ
ν ′,νψν(k, r), (150)

where ψν(k, r) and εν(k) are the eigenfunctions and the eigenvalues of the Hamil-
tonian (147) calculated without spin–orbit coupling, and n, ν are the band index. As
it can easily seen from Eq. (150) the n index should be twice that of ν because of
the summation is carried out over both spins. This leads to a spin mixing14 which
makes this latter not a good quantum number.

We now derive the angular part of the spin–orbit coupling L.σ , for more details
see the Appendix. In order to account for the appropriate geometry of this spin–orbit
operator we shall remind the reader that the quantization axis is conventionally the
z-axis. Therefore, one should rotate15 the SOC operator toward the z-axis to get
insight onto the involved z-components of the spin orbital and magnetic moments.
The rotation operation of the SOC is given by

[L.σ ]z = R(L.σ )R+, (151)

13 This is the spherical potential of Eq. (148) calculated without including the spin–orbit
interaction.
14 This effect results in a lifting of the degeneracy and can be observed in the band structure of
typical magnetic metals.
15 Rotating the SOC operator from the local frame to the global frame is equivalent to rotating the
system of reference from the global frame to the local frame.
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where R is the rotation matrix operator [88]:

R =
(

cos( θ
2 )e−i φ

2 sin( θ
2 )ei φ

2

− sin( θ
2 )e−i φ

2 cos( θ
2 )ei φ

2

)
, (152)

where θ and φ are the polar angles. Writing the spin operator σ in terms of the Pauli
matrices σx , σy , and σz

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (153)

the spin–orbit operator takes the form

L.σ =
(

lz l−

l+ −lz

)
, (154)

where l− and l+ are the angular momentum operator defined as

l− = lx − ily, l+ = lx + ily . (155)

Substituting Eqs. (154) and (152) into Eq. (151) leads to

[L.σ ]z =
( [

cos(θ )lz + 1
2 sin(θ)(e−iφl−+eiφl+)

] [
cos2( θ

2 )e−iφl−−sin2( θ
2 )eiφl+−sin(θ)lz

]
[− sin2( θ

2 )e−iφl−+cos2( θ
2 )eiφl+−sin(θ)lz

] −[cos(θ)lz + 1
2 sin(θ)(e−iφl−+eiφl+)

]
)

.

(156)

This is the formula we have adopted during our XMCD and magnetic anisotropy
investigations.

7.4 Force Theorem Determination of the Magnetic Anisotropy

One of the interesting aspect of the magnetism is that of the magnetic anisotropy.
Indeed this anisotropy result from a complex interplay of the crystal and the mag-
netic degree of freedom. This interplay is a direct consequence of the spin–orbit cou-
pling [84]. In 3d magnetic materials, for example, the magnetocrystalline anisotropy
energy (MAE) is found to be of about some μeV [89, 90] for bulk and up to some
meV [17, 91] for surfaces and thin films. According to Bruno’s [17] and van der
Laan’s [92] models these small values of the MAE are a direct consequence of the
tiny effect of the spin–orbit coupling. Given that the spin–orbit coupling is small
compared to the rest of the contributions to the Hamiltonian, this coupling can be
treated as a perturbation in the same way that is explained in the previous section. In
this respect, because of the computational effort saving gained by the force theorem
[86] many computational investigations [93–95] have been performed to satisfac-
torily explain the corresponding experimental MAE results [96, 97]. These inves-



270 M. Alouani et al.

tigations have allowed a better understanding of the MAE of magnetic 3d-based
materials. However, magnetic 4 f material anisotropy is only rarely studied. In order
to get insight into the magnetic anisotropy in 4 f rare-earth magnetic metals we
have chosen to work with the gadolinium (Gd) materials. This choice was moti-
vated by the interesting magnetic properties of Gd, especially its high spin magnetic
moment.

The MAE is defined as the difference in energy

MAE ≡ E(hardaxis) − E(easyaxis). (157)

One can also define an anisotropy energy with respect to the angle θ between a
reference axis and the magnetization direction, E A(θ ) as

E A(θ ) ≡ E(θ ) − E(ref.axis), (158)

where ref. axis indicates the axis chosen as reference (typically the easy axis or a
symmetry axis of the crystal) and θ is the angle measured from it. The anisotropy
energy can also be expanded as

E A(θ ) = K1 sin θ + K2 sin4(θ ) + (K3 + K4 cos φ) sin6 θ + . . . (159)

where Ki are the anisotropy constants, which are increasingly small.

7.5 The Force Theorem

The fact that the spin–orbit interaction can be introduced as a perturbation to scalar
relativistic systems can be exploited in order to speed up the evaluation of the MAE.
The way to do so is given by the force theorem for band structure calculations [86].
Let us consider an unperturbed system16 with its total energy given by Eq. (23):

E = T0[n(r)] +
∫

n(r)υ(r)d3r + 1

2

∫ ∫
n(r).n(r′)
|r − r′| d3rd3r ′ + Exc[n(r)]. (160)

By switching on a perturbation, one introduces a change in the total energy, to
the first order in the charge density, δn, equal to

16 The perturbation will be, for our purposes, the SOC, but, the theorem is far more general.
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δE = δT0[n(r)] +
∫

δn(r)υ(r)d3r

+
∫ ∫

n(r).δn(r′)
|r − r′| d3rd3r ′ +

∫
Vxc[n(r)]δn(r)d3r + O(δn2) (161)

≡ δT0[n(r)] +
∫

V (r)δn(r)d3r + O(δn2),

where the change in the nuclei has been disregarded and the identities

Exc ≡
∫

εxc[n(r)]n(r)d3r, (162)

δExc

δn(r)
= Vxc(r) = n(r)

δεxc[n(r)]

δn(r)
+ εxc[n(r)], (163)

V = υ(r) + VH + Vxc, (164)

have been used. The last equality is that of the total Kohn–Sham potential of Eq. (21).
According to Eq. (24) the kinetic energy can be rewritten in the form

T0[n(r)] =
∑

i

εi −
∫

V (r)n(r)d3r, (165)

therefore, its change is (also to the first order in the charge density change)

δT0[n(r)] = δ
∑

i

εi −
∫

δV (r)n(r)d3r −
∫

V (r)δn(r)d3r. (166)

Thus, if the potential is kept frozen, a substitution of Eq. (166) in Eq. (161) yields

δE = δ
∑

i

εi , (167)

which is the force theorem we wanted to derive and is valid to order O(δn). The
reason why we wanted to show here the derivation of Eq. (167) is that it is interesting
to see that some changes in the single contributions to the total energy are not zero
but they partially cancel each other to first order.

Since the change in the total energy in a frozen potential is equal to just
the change in the eigenvalue sum, one calculates this latter, less computationally
demanding quantity,17 in order to obtain the former. A large number of evaluations

17 Using the force theorem, a self-consistent calculations is performed without including the SOC.
Since all one needs is the difference of the eigenvalues sum for two magnetization directions, one
iteration would be sufficient to introduce the spin–orbit interaction.
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of MAE via the force theorem in various elements and compounds have been carried
out in the past 20 years [93, 98–100], showing that contributions of order O(δn2)
are most often negligible and that the change in the eigenvalue sum is very close to
the total energy change.

7.6 The Peculiar MAE of Gd

Gd metal is in the middle of the rare-earth (RE) series and its f -shell is half filled.
This means that, in a Russel–Saunders (RS) scheme, no orbital moment is to be
expected from the f -electron shell. Because of the sphericity of the 4 f -shell, one
expects no crystal electric field (CEF) contribution to the anisotropy and indeed the
MAE of Gd (∼35 μ eV/atom) is two order of magnitude smaller than the MAE of
other RE metals (∼meV/atom). The relevant question one may ask is what is the
origin of the observed MAE of Gd? We found that this conduction band MAE is
completely driven by the SOC band structure anisotropy. Our calculated anisotropy
is found to be in excellent agreement with experiment [101] and can be explained
by Bruno’s model [17], according to which for spherical shell with no orbital
moment (a half-filled 4 f -shell, for example) the magnetic anisotropy stems from the
spin–orbit anisotropy. The force theorem investigations of this work have shown that
the Gd MAE stems from an interplay between the dipole interaction of the large
localized 4 f spin moments and the SOC conduction band MAE. This MAE was
found to explain well the observed anisotropy energy [101], E A(θ ). These calcula-
tions will be discussed in Part II of this presentation.

8 X-ray Magnetic Circular Dichroism

8.1 History

Since the x-ray discovery by Röntgen [102] on 1895 a considerable attention and
effort have been devoted to the use of the x-ray in different research areas. Some
years after the finding of Röntgen, Bassler brought to light the polarization charac-
ter of this light within the experimental work of his thesis: Polarization of x-rays
evidenced with secondary radiation [103]. To go further in the understanding of this
x-ray’s properties many experiments were set up to observe the interaction of light
with magnetic materials [104] or non-magnetic materials with an external magnetic
field, e.g., aluminum, carbon, copper, iron, nickel, platinum, zinc, and silver [105].
The influence of the magnetism on x-ray absorption has then been investigated
measuring the difference of the absorption (or the cross-section) rate between two
different orientations of the magnetization. Unfortunately the tiny amount of this
absorption difference rate has made the results of Bassler [103] questionable if
not doubtful. The measurements recorded using the equipment of that time does
not have a sufficient sensitivity [106] and have given rise to a long controversial
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debate [107–110]. In 1983, G. Schütz and her colleagues [111] concentrated their
efforts on the use of circularly polarized x-rays in order to elucidate the influence
of the magnetic state of iron on x-ray absorption spectra. Again, the sensitivity of
the experimental setup was not high enough to detect in this energy range any spin-
dependent contribution to x-ray absorption. One year later, the attempt of Keller
and Stern [112], despite of the use of a synchrotron radiation, has failed to reveal
the dichroism of Gd in Gd18Fe82 alloy because of the circular polarization rate of the
incident x-rays was only 5%. Shortly later, the existence of x-ray magnetic circular
dichroism (XMCD) was proved experimentally by Schütz et al. at the Fe K-edge in
an iron foil [113] and at the L edges of Gd in Gd3Fe5O12 [114].18

The first theoretical investigation of XMCD was performed by Erskine and
Stern [116]. Unfortunately, very few people paid attention to their band structure
calculation of XMCD at the M2,3 absorption edges of ferromagnetic nickel. The
most important finding from a theoretical point of view which marked the beginning
of modern days for XMCD is that of Thole and coworkers [15, 16]. They considered
a single-ion electric–dipole transitions model and derived a magneto-optical sum
rules relating separately, integrated intensities of XMCD spectra to the ground-state
orbital [15] and spin [16] moments. These sum rules provided experimentalists with
a powerful tool to analyze XMCD spectra and to extract magnetic moments mag-
nitudes and directions, with the full benefit of the element and orbital selectivity of
x-ray absorption spectroscopy.

8.2 Theory

We have devoted this section to our implementation of XMCD calculations within
the Fleur code. However, before presenting the theoretical background of this imple-
mentation it would be interesting to remind previous attempts to model, simulate,
and understand experimental dichroic x-ray absorption spectra.

The first theoretical investigations of XMCD are those of Thole et al. [117] who
implemented an atomic multiplet approach [118]. This approach is based on an
empirical atomic calculation. In addition to the absence of the hybridization effect
(atomic) this method (as all the others empirical methods) relies on the experimental
spectra. Calculations applying this method to the 3d94 f n+1 multiplets of the M4,5

edges of Lantanides are summarized in the paper of Thole et al. [119]. Some years
later Chen et al. [120] made use of the Erskine and Stern model19 [116] for their
experimental L2,3 edges spectra of nickel. The disagreement between the measured
branching ratio and that predicted by the model has been ascribed to the change
of spin-dependent unoccupied density of states near the Fermi level caused by the

18 A more detailed story of the XMCD can be found in the section entitled X-ray Magnetic Circular
Dichroism: Historical Perspective And Recent Highlights by Andrei Rogalev et al. [115].
19 According to this model the large spin–orbit coupling of the core states and its small value for
valence states should allow us to treat these valence states without spin–orbit coupling.
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spin–orbit coupling effect. A year later the same group [121] published results of a
tight-binding analysis in which they presented an attempt to include the spin–orbit
coupling for d valence states. The valence spin–orbit ξ and exchange splitting Δex

parameters extracted from numerical experiments are found to be respectively larger
and smaller than those of the ground state to achieve an optimal agreement between
the simulated and experimental spectra. Later Smith et al. [122] included properly
the spin–orbit coupling within a tight-binding scheme. The results for nickel are
not too different from those of the previous calculation [121] but the parameters
(ξ , Δex) found for iron revealed the sensitivity of the XMCD spectra on the unfilled
d band width. The discrepancies between the calculated and the experimental
parameters were imputed to many-body effects, e.g., since the core hole is created,
the 3d valence electrons will see a stronger attractive core potential and the spatial
extent of their orbitals will contract. Consequently, relativistic effects such as the
spin–orbit coupling will be stronger, and the exchange interaction among the first
neighbors will be weaker.

The development of x-ray spectroscopy experiments probing the magnetic prop-
erties of a large variety of magnetic rare-earth materials and the growing interest of
the scientific community toward their applications in media storage, strong magnets
and the emerging field of spintronics have stimulated our XMCD calculations for
these materials. The discovery of XMCD sum rules may be a powerful tool for
understanding and characterizing magnetic properties.

In order to study the strongly localized magnetism of rare-earth metals, we have
implemented the XMCD absorption within the dipolar approximation using polar
geometry.20 Before providing the corresponding theoretical background we will
briefly discuss two much-earlier magneto-optical (MO) effects which are, to some
extent, related to XMCD.

When the linearly polarized light beam penetrates a magnetized sample, the light
will become elliptically polarized upon transmission as well as reflection. No matter
whether the magnetization is present spontaneously or induced by an external mag-
netic field, these phenomena are called the Faraday [123] and Kerr [124] effects.

The quantum mechanical understanding of the Kerr MO effect began as early as
1932 when Hulme [125] ascribed Kerr effect to the spin–orbit coupling (SOC).

The interaction of the electromagnetic radiation with a magnetic medium is
described classically by Maxwell’s equations [126]:

∇ × E + ∂B
∂t

= 0, (168)

∇.B = 0, (169)

∇ × H − ∂D
∂t

= J, (170)

∇.D = ρ, (171)

20 This configuration corresponds to the case where the magnetization direction is parallel to the
wave vector of the x-ray beam.
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where D is the electric displacement, which is related to the total electric field E
caused in part by the polarization P of the medium:

D = ε0E + P = (1 + χe)ε0E = εE, (172)

and B is the magnetic induction, which is related to the macroscopic magnetic field
H resulting from the magnetization M:

B = μ0(H + M) = (1 + χm)μ0H = μH, (173)

where ε0 and μ0 are the vacuum permittivity and the vacuum permeability, and
χe and χm , are the electric and magnetic susceptibility, respectively. According to
Ohm’s law the macroscopic current density J produced by an electric field E is
given by

J = σ .E. (174)

Equations (172), (173), and (174) are known as the material equations. They are
known such that because they characterize the response functions of the medium to
external excitations: the dielectric constant ε, the magnetic permeability μ, and the
electrical conductivity σ . In general the dielectric constant is a function of both spa-
tial and time variables that relates the displacement field D(r, t) to the total electric
field E(r′, t ′):

D(r, t) =
∫ ∫ t

−∞
ε(r, r′, t ′)E(r′, t ′)dt ′dr ′. (175)

In the following we neglect the spatial dependence of the dielectric constant and
consider only its frequency dependence ε(ω). Usually, the effect of the magnetic
permeability μ(ω) on optical phenomena is small and we assume that μ(ω) = μ0I
where I is a unit tensor. It should be stressed also that ε and μ may depend on the
field strength. In such cases higher order terms in a Taylor expansion of the material
parameters lead to appearance of the nonlinear effects [127]. Using the material
equations and Maxwell equations it can be easily shown that

ε = 1

ε0

(
1 + i

σ

ω

)
. (176)

For simplicity let us consider a material of cubic structure with a magnetization
M directed along z axis. Above the Curie temperature TC the three components of
the dielectric tensor are equal21 so that

ε(ω) = ε I . (177)

21 This is the case when the dielectric components are presented in the cubic principal axes. The
principal axes are the classical analogue of the local frame axes in quantum mechanics.
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When the magnetization M appears below TC the symmetry is lower and ε(ω)
becomes [128]

ε(M, ω) =
⎛

⎝
εxx εxy 0

−εxy εxx 0
0 0 εzz

⎞

⎠ . (178)

The remaining symmetry of the system depends on the orientation of the magne-
tization. The components of the dielectric tensor depend on the magnetization and
satisfy the following Onsager relations

εi, j (−M, ω) = ε j,i (M, ω), (179)

where i, j = x, y or z. These relations mean that the diagonal components of the
dielectric tensor are even functions of M, whereas the nondiagonal ones are odd
functions of M. In the lowest order in M

εxy ∼ M, εzz − εxx ∼ M2. (180)

In the absence of an external current (J = 0) and free charges (ρ = 0) Maxwell
equations reduce to

∇ × E = −μ0
∂H
∂t

, (181)

∇ × H = ε
∂E
∂t

. (182)

After substitution of E and H in a form of plane waves

E = E0e[−i(ωt−q.r)], (183)

H = H0e[−i(ωt−q.r)], (184)

one arrives to the a secular equation

⎛

⎝
N 2 − εxx −εxy 0

εxy N 2 − εxx 0
0 0 N 2 − εzz

⎞

⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0, (185)

where ω is the frequency, q is the wave vector of light, and N is a unit vector directed
along q (N = q

ω
c). When the light propagates along z direction, i.e., along M ,

Ez = 0, and one finds the eigenvalues

n2
± = εxx ± iεxy . (186)
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This means that the normal modes of the light accounting for the response (the
displacement field D) to the plane wave field (E) are

D+ = n2
−(Ex + i Ey), D− = n2

+(Ex − i Ey), (187)

i.e., a left and right polarized light wave with complex refractive indices of n− and
n+, respectively.

8.2.1 Faraday Effect

In 1845, Faraday discovered [123] that the polarization vector of linearly polarized
light is rotated upon transmission through a sample of thickness l that is exposed
to a magnetic field parallel to the propagation direction of light. Indeed, in a ferro-
magnet, the left-hand and right-hand circularly polarized lights propagate generally
with different refractive indices or different velocities c/n− and c/n+. When the
two transmitted light waves are combined at the exit surface of the sample, they
yield again a linearly polarized light, but its plane of polarization is rotated by the
so-called Faraday angle θF given by [129]

θF = ωl

2c
Re(n+ − n−). (188)

The direction of the rotation depends on the relative orientation of the magneti-
zation and the light propagation. If two circularly polarized waves attenuate at dif-
ferent rates, then after traveling through the sample, their relative amplitude change.
Therefore the transmitted light becomes elliptically polarized, with an ellipticity

ηF = −ωl

2c
I m(n+ − n−). (189)

The ellipticity ηF corresponds to the ratio of the minor to the major axes of the
polarization ellipsoid and is related to the magnetic circular dichroism, which is
defined by the difference of the absorption coefficient μ between the right and the
left circularly polarized light

Δμ(ω) = μ+(ω) − μ−(ω) = −4ηF (ω)

l
. (190)

8.2.2 Kerr Effect

About 30 years later, Kerr [124] observed that when linearly polarized light is
reflected from a magnetic solid, its polarization plane (the major axis of the ellipse)
also rotates over a small angle with respect to that of the incident light.
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M

(c)

M

(a)

M

(b)

Fig. 5 The different geometries for the MO Kerr effect: (a) the polar Kerr effect, (b) the longitu-
dinal Kerr effect, (c) the transversal Kerr effect

Depending on the orientation of the magnetization vector relative to the reflective
surface and the plane of incidence of the light beam, three types of the magneto-
optical effects in reflection are distinguished: polar, longitudinal, and transverse
(equatorial) effects (Fig. 5). For linearly polarized incident light the reflected light
will in general be elliptically polarized in the polar Kerr geometry (Fig. 5a). The
relation between the complex polar Kerr angle and the complex refraction indices
can be derived from the Fresnel relations and is given by [130]

1 + tan(ηK )

1 − tan(ηK )
e2iθK = (1 + n+)

(1 − n+)

(1 − n−)

(1 + n−)
. (191)

For most materials the Kerr rotation and ellipticity are less than 1◦. For more
detailed explanations for these effects and related results the reader is advised to see
the chapter of reference [131].

8.2.3 The XMCD Formalism

In the previous section the response of the medium to electromagnetic waves was
described in a phenomenological manner in terms of the frequency-dependent com-
plex dielectric constant and conductivity. Within the linear response theory and
using band structure methods, Callaway and Wang [22] have proposed a micro-
scopic model for the calculations of the optical conductivity tensor

σαβ(ω) = ie2

m2�V

∑

k

∑

νν ′

( f (ενk) − f (εν ′k))(
ω − ωνν ′(k)+iγ

) Mα
νν ′(k)Mβ

νν ′(k)

ωνν ′(k)
. (192)

It relates the macroscopic optical conductivity to the sum of interband transitions
between Bloch states ψνk and ψν ′k with energies ενk and εν ′k, where ν and ν ′ being
the band indices, V the unit cell volume, f (ενk) the Fermi function, �ωνν ′ (k) =
ενk−εν ′k, and γ = 1

τ
is a phenomenological relaxation time parameter that takes into

account the finite lifetime of the excited electronic states. Mi
νν ′(k) are the interband
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electronic transitions matrix elements which account for the probability of transition
after an electron–photon interaction takes places. This matrix will be considered in
more details later.

The real and imaginary parts σ (1)(ω) and σ (2)(ω) are related by the Kramers–
Kronig relations [132] and can be determined separately. It is important to note
that the relation (192) was derived for interband transitions, i.e., q = k − k′=0.
Usually the missing intraband contributions depend on lattice imperfections of the
system as well as on the temperature. These contributions lie beyond the scope of
our manuscript and are not considered.

In recent years the study of magneto-optical effects in the x-ray range has gained
a great importance as a tool for the investigation of magnetic materials [4, 133]. The
attenuation of the x-ray intensity when passing through a sample of thickness d is
given by Beer’s law:

I (d) = I0e−μqλ(ω)d , (193)

where μqλ(ω) is the absorption coefficient which in general depends on the wave
vector q, the energy �ω, and the polarization λ of the radiation. In the x-ray regime
the absorption coefficient μqλ is related to the absorptive part of the dielectric func-
tion εqλ or the optical conductivity σqλ via [4]

μqλ(ω) = ω

c
ε

(2)
qλ (ω) = 4π

c
σ

(1)
qλ (ω). (194)

This means that μqλ(ω) can be evaluated22 using Eq. (192):

μqλ(ω) = πc2

�ωmV

occ∑

i

unocc∑

f

|Mqλ

i f |2δ(�ω − E f + Ei ). (195)

In contrast to Eq. (192) in which the matrix elements of the electron–photon
interaction are evaluated between two Bloch states, the matrix elements Mqλ

i f are
calculated between a well localized initial core state i and an extended final state
f . The sum over initial states i is usually restricted to one core shell which could
be achieved by an experimental fine-tuning of a particular absorption edge. This
important property makes x-ray absorption an element specific probe.

22 Equation (195) can be considered as the limit of the real part of the matrix elements (Eq. 192)
when the frequency (ω) becomes too high (x-ray regime). In this case the frequency ω can be
rewritten as ω = ω0 + δω because of the sharp energy of the involved core levels and therefore

1

ω
= 1

ω0 + δω
∼ 1

ω0
.

This is why the factor 1
ω

is again present in Eq. (195).



280 M. Alouani et al.

The Mqλ

i f matrix transitions accounts for the electron–photon interaction operator

Ĥel−ph = −1

c
JAqλ(r) = −1

c
Jeλ Aeiqr, (196)

where Aqλ(r) is the vector potential with the wave vector q and polarization λ, J is
the electronic current density operator

J = −ecα, (197)

and α accounts for the electronic momentum operator23: (�/ i)∇. The components
of the polarization vector for linearly polarized light are given by

ex =
⎛

⎝
1
0
0

⎞

⎠ , ey =
⎛

⎝
0
1
0

⎞

⎠ , ez =
⎛

⎝
0
0
1

⎞

⎠ . (199)

For q pointing along the z axis, left (+) and right (-) circularly polarized lights
are presented by the polarization vector

e± = 1√
2

⎛

⎝
1
±i
0

⎞

⎠ . (200)

In order to get insight into the corresponding absorption phenomena one needs
to calculate matrix elements of the form

Mqλ

i f = 〈ψi |Ĥel−ph|ψ f 〉. (201)

It is generally argued that in the frequency range of conventional optics the ampli-
tude of the vector potential varies only on a microscopic scale. This implies that it
is sufficient to expand the exponential factor in Eq. (196)

eiqr = 1 + iqr − 1

2
(qr)2 . . . , (202)

and retain just the first constant term, in which case only the electric–dipole inter-
action is accounted for. For x-ray regime (XMCD) the next term in the expansion

23 Within the scalar relativistic approximation (see Sect. 7.2) the total momentum operator is
expressed as

α = p + �

4mc2
σ × ∇V = �

i
∇ + �

4mc2
σ × ∇V, (198)

while in the non-relativistic case (c → ∞) this operator reduces to the electronic momentum
operator.
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that represents the quadripolar interaction may also be important. However, Arola
et al. [134] showed that the contribution from the quadripolar interaction to the
K-edge cross-sections of iron is two orders of magnitude smaller than that of the
electric–dipole contribution. We have also shown that for bulk gadolinium [57] as
well as for gadolinium compounds [58] (GdN) our dipolar XMCD calculations led
to a good agreement with experiment without need for including the quadripolar
contribution. Within the dipolar approximation the absorption coefficient reduces to

Mqλ

i f = 〈ψi |αeλ|ψ f 〉. (203)

The ec constant is deliberately omitted. It is worth mentioning that the symme-
try reduction due to the presence of spontaneous magnetization that leads to the
appearance of nonzero off-diagonal components of the dielectric tensor, e.g., εxy

in (178), occurs only if both the spin polarization and the spin–orbit coupling are
simultaneously taken into account in the calculations. Technically speaking, our
FLAPW-XMCD calculations are performed in two steps. First a good convergence
is achieved (in term of total energy and charge density) within a scalar relativistic
calculation where the SOC is included in a second variational way, after that one
iteration is carried out in order to calculate the absorption coefficients using the
electronic wave functions accounting for the supposed ground state. The initial core
wave functions ψi are given by

ψi = ψ jμ =
∑

msc

C jμ
lcμ−msc,

1
2 msc

ulc (r )Ylcμ−msc (r̂)χmsc

=
∑

msc

C jμ
lcmc,

1
2 msc

ulc (r )Ylcmc (r̂)χmsc ,
(204)

and the final wave functions ψ f states are the dispersive (k-dependent) FLAPW
valence wave functions

ψ f = ψσ
ν (k, r ) =

∑

lm

(Alm(k)ul (r )Ylm(r̂) + Blm(k)u̇lYlm(r̂))χms, (205)

where χsc, χs , msc, and ms are the core spin functions, the valence spin func-
tions, the corresponding magnetic quantum numbers, respectively. C jμ

lcμ−ms ,
1
2

are

the Clebsh–Gordan coefficients, j is the total momentum of the electron, lc and l
are the core and valence angular momentum quantum numbers, μ (or m j ) and m
are the corresponding magnetic quantum numbers. The core and valence states are
calculated separately and in a different way, that is to say that the core wave func-
tions corresponding to deep energy levels are determined within a fully relativistic
calculation while valence eigenfunctions are evaluated within a scalar relativistic
calculation including the SOC as a perturbation (second variation approximation).
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Let us consider one edge transitions involving the initial j states and the final l
states. The Mqλ

i f matrix can be rewritten as

Mqλ

i f = Mqλ

jμ(k) =
∑

m,msc

C jμ
lcmc,

1
2 msc

〈ulc (r )Ylcmc (r̂)|αeλ|(Alm(k)ul(r )Ylm(r̂) + Blm(k)u̇lYlm(r̂))〉δmscms . (206)

Using the relation

αeλ = er .eλ

i

∂

∂r
− 1

r
(er × L).eλ, (207)

where L is the orbital angular momentum operator, Eq. (206) becomes

Mqλ

jμ(k) =
∑

m,ms

C jμ
lcmc,

1
2 ms

(〈
ulc Ylcmc

∣∣∣∣
er .eλ

i

∂

∂r

∣∣∣∣ (Alm(k)ulYlm + Blm(k)u̇lYlm

〉

−
〈
ulc Ylcmc

∣∣∣∣
1

r
(er × L).eλ

∣∣∣∣ (Alm(k)ulYlm + Blm(k)u̇lYlm

〉)
.

(208)

Both of the terms inside the parenthesis can be separated into radial and angular
part as

〈
ulc Ylcmc

∣∣∣∣
er .eλ

i

∂

∂r

∣∣∣∣ (Alm(k)ulYlm + Blm(k)u̇lYlm

〉
=

(
Alm(k)

〈
ulc

∣∣∣∣
1

i

∂ul

∂r

〉
+ Blm(k)

〈
ulc

∣∣∣∣
1

i

∂ u̇l

∂r

〉) 〈
Ylcmc |er .eλ| Ylm

〉
, (209)

and

〈
ulc Ylcmc

∣∣∣∣
1

r
(er × L).eλ

∣∣∣∣ (Alm(k)ulYlm + Blm(k)u̇lYlm

〉
=

(
Alm(k)

〈
ulc

∣∣∣∣
1

r
ul

〉
+ Blm(k)

〈
ulc

∣∣∣∣
1

r
u̇l

〉) 〈
Ylcmc |(er × L).eλ| Ylm

〉
. (210)

It can be easily seen that the angular multiplicative factor of Eq. (209) involves
the Gaunt coefficients Gmcλm

lc1l . Using the spherical harmonic relations [135]:

cos(θ )Ylm =
√

(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
Yl+1m +

√
(l + m)(l − m)

(2l + 1)(2l − 1)
Yl−1m, (211)

and

[
L−, cos(θ )

] = �e−iφ sin(θ ), (212)
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the angular multiplicative factor of Eq. (210) can be expressed as a function of spher-
ical harmonics. Using the mentioned relations, after some algebraic manipulations
the matrix transitions for different polarizations can be formulated as

Mq+
jμ (k)=∑m,ms

C jμ
lcmc,

1
2 ms

(
− (Alm(k)

〈
ulc

∣∣ 1
i

∂ul
∂r

〉+Blm(k)
〈
ulc

∣∣ 1
i

∂ u̇l
∂r

〉)√
4π
3 Gmc+1m

lc1l

+ (Alm(k)
〈
ulc

∣∣ 1
r ul
〉+ Blm(k)

〈
ulc

∣∣ 1
r u̇l
〉)

1√
2
δmc,m+1

.
(

(l + 1)
√

(l−m)(l−m−1)
(2l−1)(2l+1) δlc,l−1 + l

√
(l+m+2)(l+m+1)

(2l+1)(2l+3) δlc,l+1

))
. (213)

Mq−
jμ (k) =∑m,ms

C jμ
lcmc,

1
2 ms

((
Alm(k)

〈
ulc

∣∣ 1
i

∂ul
∂r

〉+ Blm(k)
〈
ulc

∣∣ 1
i

∂ u̇l
∂r

〉)√
4π
3 Gmc−1m

lc1l

− (Alm(k)
〈
ulc

∣∣ 1
r ul
〉+ Blm(k)

〈
ulc

∣∣ 1
r u̇l
〉)

1√
2
δmc,m−1

.
(

(l + 1)
√

(l+m)(l+m−1)
(2l−1)(2l+1) δlc,l−1 + l

√
(l−m+2)(l−m+1)

(2l+1)(2l+3) δlc,l+1

))
. (214)

Mqz
jμ(k) =∑m,ms

C jμ
lcmc,

1
2 ms

((
Alm(k)

〈
ulc

∣∣ 1
i

∂ul
∂r

〉+ Blm(k)
〈
ulc

∣∣ 1
i

∂ u̇l
∂r

〉)√
4π
3 Gmc0m

lc1l

+ (Alm(k)
〈
ulc

∣∣ 1
r ul
〉+ Blm(k)

〈
ulc

∣∣ 1
r u̇l
〉)

δmc,m

.
(

(l + 1)
√

(l−m)(l+m)
(2l−1)(2l+1) δlc,l−1 − l

√
(l−m+1)(l+m+1)

(2l+1)(2l+3) δlc,l+1

))
. (215)

The brackets in Eq. (212) denote the commutator, and θ and φ are the spherical
angles.

Inserting Eqs. (213),(214), and (215) in Eq. (195) and performing k-integration
(according to the Brillouin zone integration methods) one can finally calculate the
corresponding absorption coefficients μq+(ω), μq−(ω), and μq0(ω) for left, right,
and z polarized light and therefore calculate the key physical quantity

Δμ(ω) = μq+(ω) − μq−(ω) �= 0. (216)

If x-rays are absorbed by a magnetic solid the absorption coefficients for left
and right circularly polarized photons are in general different so that Δμ �= 0. This
quantity can be measured experimentally [113] and is called x-ray magnetic circular
dichroism (XMCD).

As it can easily be seen from Eqs. (213), (214), and (215) the corresponding
matrix transitions elements Mqλ

jμ(k) do not vanish only if

⎧
⎨

⎩

Δl = l − lc = ±1
Δm = m − mc = λ

Δms = ms − msc = 0
. (217)
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These conditions are used to select the allowed transitions within the dipolar
approximation and they are known as the dipole selection rules. We will give in the
second appendix some details about the solution of Fresnel equation in matter.

8.3 The XMCD Sum Rules

Magnetic compounds and alloys characterization represent one of the outstanding
problem in condensed matter physics. Recently, a considerable evolution of the
spectroscopic techniques has been achieved and was helped by theoretical efforts.
With the derivation of the sum rules by Thole and coworkers [15, 16] XMCD spec-
troscopy became the most used technique for studying magnetic materials. These
sum rules supply a firm basis to estimate directly from XMCD spectra the orbital
moment (ML = −μB

�
〈Lz〉) and the magnetic moment (MS = −2μB

�
〈Sz〉) con-

tributions to the total magnetic moment associated with a specific state of given
symmetry. Thus the magnetic spin and orbital moments of the absorber atom are
related to the integrated absorption spectra for a specific core shell and polarization
of the radiation as

∫

j+
ΔμdE −

[
lc + 1

lc

] ∫

j−
ΔμdE = N

nh

[
l(l + 1) − 2 − lc(lc + 1)

3lc
〈Sz〉 (218)

+ l(l + 1) [l(l + 1) + 2lc(lc + 1) + 4] − 3(lc − 1)2(lc + 2)2

6llc(l + 1)
〈Tz〉
]

, (219)

and

∫

j++ j−
ΔμdE = N

2nh

[
l(l + 1) + 2 − lc(lc + 1)

l(l + 1)

]
〈Lz〉 , (220)

where N is the total integrated spectrum corresponding to the unpolarized radiation
(known also as the isotropic absorption contribution)

N =
∫

j++ j−

⎛

⎝
∑

λ=+,−,0

μλ

⎞

⎠ dE, (221)

Δμ = μ+ − μ−,
and Tz is the magnetic dipole operator

Tz = 1

2

[
σ − 3r̂(r̂.σ )

]
z
. (222)

that will be derived in the appendix.



Effect of Spin–Orbit Coupling on the Magnetic Properties 285

∫
j++ j−

means that the integral is performed over both of the j+ = l + 1/2 and
of the j− = l − 1/2 edge spectra, e.g., j+ = 3/2 and j− = 1/2 for the L2,3 edges
of transition metals, nh denotes the number of holes or the number of unoccupied
final states, and 〈Sz〉, 〈Lz〉, and 〈Tz〉 are, respectively, the expectation values of the
magnetic moment, the orbital moment, and the magnetic dipole operator.

The expectation value of the magnetic dipole operator accounts for the aspheric-
ity of the spin magnetization. This asphericity can be considered as a magnetic
anisotropy resulting from the spin–orbit coupling or crystal-field effects.

The application of these sum rules provides as with the magnetic spin and orbital
moments since the expectation value of the Tz operator is determined. In order to
extract these moments from the absorption spectra we have used [57] the sum rules
for the different edges:
K-edge

∫ Ecut

EF

ΔμdE = N

nh
〈Lz〉 , (223)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

Δμλ, (224)

L2,3edges

∫ Ecut

EF

[
(μ+

L3
− μ−

L3
) − 2(μ+

L2
− μ−

L2
)
]

dE = N

3nh
[〈Sz〉 + 7 〈Tz〉] , (225)

∫ Ecut

EF

[
(μ+

L3
− μ−

L3
) + (μ+

L2
− μ−

L2
)
]

dE = N

2nh
〈Lz〉 , (226)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

(Δμλ
L3

+ Δμλ
L2

), (227)
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and M4,5 edges

∫ Ecut

EF

[
(μ+

M5
− μ−

M5
) − 3

2
(μ+

M4
− μ−

M4
)

]
dE = N

3nh
[〈Sz〉 + 6 〈Tz〉] , (228)

∫ Ecut

EF

[
(μ+

M5
− μ−

M5
) + (μ+

M4
− μ−

M4
)
]

dE = N

3nh
〈Lz〉 , (229)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

(Δμλ
M5

+ Δμλ
M4

). (230)

The integrations are carried out from the Fermi energy EF up to an energy cut-
off Ecut. This energy represents the energy of the top of the final magnetic states.
The number of holes nh are also calculated from the density of states, and they are
determined from the integration of the unoccupied part of the partial density of final
states.

In order to make a useful and relevant applications of these sum rules one should
know their limitations due to the assumptions made in order to derive them. In fact,
to derive the XMCD sum rules, Thole and coworkers have adopted a single ion
model combined with a scalar relativistic approach. The principle assumption of
these sum rules derivation is that of the two-step model [113]. Depending on the
photon polarization, the XMCD transitions will be achieved in two steps. First, the
core electron will choose one of the spin directions according to the core spin–
orbit splitting, that is to say, depending on the encountered spin–orbit interaction
and because of the conservation of the angular momentum during the absorption
process the angular momentum carried out by the photon is completely or partially
transferred to the photoelectron, in a second step the exchange spin splitting of the
final state is different whether the spin of the incoming electron is up or down.
This could simulate the eventual change of the exchange splitting resulting from
the spin dependence of the incoming photoelectron. The others’ assumptions of the
underlying physics of the XMCD sum rules are to ignore the following [136]:

1. the exchange splitting of the core states,
2. the asphericity of the core states,
3. the difference between the radial relativistic part of the final wave functions, i.e.,

the radial parts ul(r ) of p1/2 and p3/2 or d3/2 and d5/2 are the same, and
4. the energy dependence of the wave function.

Despite such limiting approximations, the validity of the sum rules appears to
be now rather well established, at least in the cases of the L2,3 absorption edges of
3d [137, 138, 10], 4d [139] and 5d [140] transition metals. However, one should
keep in mind that there are some problems when applying the sum rules to XMCD
spectra. The most severe one is the separation of the L2- and L3-spectra, e.g.,
because of the strong hybridization between the 2p N orbitals and the 4d-Gd orbitals
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in GdN compound ([141] and references therein). The 5d-Gd magnetic moment
extracted from the application of the sum rules to L2,3 edges of Gd could not account
for the realistic 5d magnetic moment since a part of that moment is supposed to be
transferred or transformed to 2p magnetic moment.

Apart from this weak point of the XMCD sum rules, the successful use we have
made of the XMCD sum rules to calculate the magnetic moment of Gd atoms
in gadolinium bulk has shown the validity and the usefulness of these sum rules
for strongly localized 4 f materials [57]. This is not surprising since 4 f rare-earth
orbitals are so localized that the hybridization with others orbital will be marginal
and f states will carry the whole magnetic moment of 4 f electrons. Therefore we
expect that 4 f magnetic materials such as rare-earth metals are well studied by
XMCD investigations.

Acknowledgments We acknowledge financial support from an ANR grant ANR-06-NANO-053.

Appendix

Spin–Orbit Coupling

As it was shown in Sect. 4, the Dirac Hamiltonian can be transformed into a
Schrödinger-like Hamiltonian. In this appendix, we will develop the spin–orbit con-
tribution to the Hamiltonian. Let H be

H = H0 + HSOC = H0 + e

4m2
σ .(E ∧ p), (231)

where H0 is the Kohn–Sham semi-relativistic Hamiltonian, σ the Pauli matrices, p
the momentum, E = −∇V the electric field, and m the electron mass. The second
variational method consists first in solving the Hamiltonian H0, i.e., obtaining its
eigenvalues and eigenvectors by diagonalization. For a system with translational
symmetry, the eigenvalues of H0 can be written as

H0|n, k, σ 〉 = εσ
n,k|n, k, σ 〉. (232)

In the FLAPW method, the wave functions can be given by

〈r |n, k, σ 〉 = Ψσ
n,k(r) =

⎧
⎨

⎩

1√
Ω

∑
G

Cσ
nk(G)ei(k+G).r r ∈ I

∑
lm

[
Almσ

n,k U σ
l (r ) + Blmσ

n,k U̇ σ
l (r )
]

Y m
l (r̂ ) r ∈ MT.

(233)

The index I represents the interstitial region, whereas MT represents the muffin-
tin region. Now we will express the matrix elements of the SOC in both regions.
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SOC in the Muffin-Tin Region

In the muffin-tin region the potential of the crystal is developed on spherical har-
monics. In general, the spherical part of the potential is dominant. We will treat in a
first approximation only the spherical part and in the second one the non-spherical
parts of the potential.

Spherical Approximation

In the case where the potential has a spherical symmetry, the electric field is
written as

E = −dV0

dr
ur ,

where ur is the radial unitary vector. The Hamiltonian HSOC is then given by

HSOC = α2

m2

dV0

dr
σ .ur ∧ p = ξ (r )σ .L, (234)

where L is the orbital moment operator and ξ (r ) = α2

m2r
dV0
dr . In order to calculate the

matrix element of
〈
n, k , σ |HSOC|n′, k , σ ′〉 , using the Kohn–Sham wave functions

|n, k , σ 〉, we determine the following radial integrals:

ζ σσ ′
1,l = α2

∫

MT
rdrU σ

l (r ) 1
m2

dV σ ′
0

dr U σ ′
l ,

ζ σσ ′
2,l = α2

∫

MT
rdrU σ

l (r ) 1
m2

dV σ ′
0

dr U̇ σ ′
l ,

ζ σσ ′
3,l = α2

∫

MT
rdrU̇ σ

l (r ) 1
m2

dV σ ′
0

dr U̇ σ ′
l .

(235)

We assume that the quantization axis is along the u axis determined by the angles
ϑ et ϕ with respect to z axis. Let |±〉 be the spin basis vectors and |±〉u the eigen-
vectors of σ .u . We can write [135, 142]

( |+〉u

|−〉u

)
= R(ϑ, ϕ)

( |+〉
|−〉
)

, (236)

where

R(ϑ, ϕ) =
(

cos ϑ
2 e−i ϕ

2 sin ϑ
2 ei ϕ

2

− sin ϑ
2 e−i ϕ

2 cos ϑ
2 ei ϕ

2

)
. (237)
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We deduce that

(σ .L)u =
(

Lz L−
L+ −Lz

)

u

=
[

R(ϑ, ϕ)

(
Lz L−
L+ −Lz

)
R†(ϑ, ϕ)

]

z

(238)

and

〈
lm|σ .L|lm ′〉 =

(
χ1

lm,lm ′ χ2
lm,lm ′

χ2∗
lm,lm ′ −χ1

lm,lm ′

)
, (239)

where

χ1
lm,lm ′ = m cos ϑδm,m ′ + 1

2 sin ϑ
[√

(l + m)(l − m + 1)eiϕδm,m ′+1
]+

1
2 sin ϑ

[√
(l − m)(l + m + 1)e−iϕδm,m ′−1

]
,

χ2
lm,lm ′ = −m sin ϑδm,m ′ + [− sin2 ϑ

2

√
(l + m)(l − m + 1)eiϕδm,m ′+1

]

+ [cos2 ϑ
2

√
(l − m)(l + m + 1)e−iϕδm,m ′−1

]
.

(240)

The matrix element of HSOC can then be written as

〈
nk |HSOC|n′k

〉 =
(

H↑↑
n,n′,k H↑↓

n,n′,k
H↓↑

n,n′,k H↓↓
n,n′,k

)
, (241)

where

H↑↑
n,n′ = ∑

l,m,m ′

[
A↑ A′↑ζ

↑↑
1,l + A↑ B ′↑ζ

↑↑
2,l + B↑ A′↑ζ

↑↑
2,l + B↑ B ′↑ζ

↑↑
3,l

]
χ1

lm,lm ′ ,

H↑↓
n,n′ = ∑

l,m,m ′

[
A↑ A′↓ζ

↑↓
1,l + A↑ B ′↓ζ

↑↓
2,l + B↑ A′↓ζ

↑↓
2,l + B↑ B ′↓ζ

↑↓
3,l

]
χ2

lm,lm ′ ,

H↓↑
n,n′ = ∑

l,m,m ′

[
A↓ A′↑ζ

↓↑
1,l + A↓ B ′↑ζ

↓↑
2,l + B↓ A′↓ζ

↓↑
2,l + B↓ B ′↑ζ

↓↑
3,l

]
χ2

lm,lm ′ ,

H↓↓
n,n′ = − ∑

l,m,m ′

[
A↓ A′↓ζ

↓↓
1,l + A↓ B ′↓ζ

↓↓
2,l + B↓ A′↓ζ

↓↓
2,l + B↓ B ′↓ζ

↓↓
3,l

]
χ1

lm,lm ′ .

(242)
To simplify the writing, we suppress the indices k and lm and replace A(B)lm,σ

n,k

by A(B)σ . We can then write the matrix of H of size 2N × 2N , where N is the
number of band energies, and using the matrix elements of H0

〈
n, k , σ |H0|n′, k , σ ′〉 = εn,kδn,n′δσ,,σ ′ . (243)
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The diagonalization of the full Hamiltonian leads to the eigenvalues and eigen-
vectors of the Hamiltonian written in terms of those of H0.

Discussion

The non-diagonal matrix elements H↓↑
n,n′ and H↑↓

n,n′ couple the spin components, and
consequently the spin sub-bands of majority and minority spins are not independent.
In addition to the splitting of the energy levels εnk due to the SOC diagonal elements,
there is a spin flips due to the non-diagonal elements. These spin flips are of great
importance, particularly to the physics of half-metals. The splitting of the bands
toward lower and higher energies is also important (see Fig. 6).

It is also important to determine the order of magnitude of the SOC. As it was
shown, the SOC is of the order of α2 multiplied by a radial integral (see Eq. (235)),
and this last integral is proportional to the radial derivative of the potential, which
is itself proportional to the atomic Z number. Therefore, the SOC is more impor-
tant for heavy atoms. Table 1 shows the calculated radial integrals for gold and
nickel. We can see that those of gold are an order of magnitude greater than those of
nickel.

−3
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−1

0

1

En
er

gy
 (e

V
)

Γ X W L Γ W

Fig. 6 Band structure of nickel. The circles show the splitting of the bands at the band crossing,
whereas the squares show the splitting of the double degenerate bands due to the SOC
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Table 1 Expectation values of the radial integrals ζ σσ ′
i,l (in Hartrees) calculated for nickel and gold

ζ
↑↑
1,l ζ

↓↑
1,l ζ

↓↓
1,l ζ

↑↑
2,l ζ

↓↑
2,l ζ

↓↓
2,l ζ

↑↑
3,l ζ

↓↑
3,l ζ

↓↓
3,l

Ni p 0.24 0.24 0.24 0.03 0.03 0.03 0.005 0.005 0.005
d 0.095 0.090 0.093 0.106 0.106 0.106 0.122 0.127 0.127

Au p 2.16 2.16 2.16 0.25 0.25 0.25 0.03 0.03 0.03
d 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.65 0.65

SOC of Non-magnetic or Paramagnetic Materials

In general, to include the SOC one has to choose a quantification axis, parallel to the
magnetization axis. However, in the case of non-magnetic or paramagnetic materials
there is no magnetization. The choice of a quantification axis leads to an asymmetry
of the physical quantities because of the symmetry reduction. To overcome this
restriction we have developed a formalism of SOC where this problem is solved,
i.e., the full symmetry is restored.

Let p(ϑ, ϕ) be the probability for the magnetization pointing in the direction u,
defined by the angles ϑ and ϕ. In a ferromagnetic material where the magnetization
points toward the direction given by ϑ0 and ϕ0, the probability p(ϑ, ϕ) is given by

p(ϑ, ϕ) = δ(ϑ − ϑ0)δ(ϕ − ϕ0), (244)

where δ is the Dirac distribution. In paramagnetic materials, all directions of the
magnetization (spin axis) are equally probable:

p(ϑ, ϕ) = 1

4π
. (245)

We have determined the Hamiltonian for ferromagnetic materials (234), but we
can generalize to any paramagnetic system by rewriting the SOC part of the Hamil-
tonian as

HSOC = Hϑ,ϕ =
π∫

0

dϑ

2π∫

0

p(ϑ, ϕ)R(ϑ, ϕ)HSOC R†(ϑ, ϕ). (246)

This leads to

〈
lm|σ .L|lm ′〉 = δl,l ′δm,m ′

(
0 − m

2π− m
2π

0

)
= − m

2π
δl,l ′δm,m ′σx . (247)
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Magnetic Dipole

The dipolar magnetic operator can be written as:

Tz = 1

2
[σ − 3ur (ur .σ )]z (248)

or explicitly as

Tz = 1

2

(
1 − 3 cos2 θ −3 cos θ sin θe−iϕ

−3 cos θ sin θeiϕ −1 + 3 cos2 θ

)
=
√

2π

5

(√
2Y 0

2 −√
3Y −1

2√
3Y 1

2 −√
2Y 0

2

)
.

(249)
When the magnetization points along the quantification axis z, Tz becomes

Tz =
√

4π

5

(
Y 0

2 0
0 −Y 0

2

)
. (250)

In the FLAPW method, we determine the mean value of the dipolar magnetic
operator inside the muffin-tin region MT α, where the wave function is given by

Ψ
α,σ
nk (r ) =

∑

lm

[
Aσ,n,k

α,lm Uα,σ
l (|r − Rα|) + Bσ,n,k

α,lm U̇α,σ
l (|r − Rα|)

]
Y m

l ( ˆr − Rα).

(251)
To simplify the notation, we restrict ourselves to the case of one atom per unit

cell. The mean value of the Tz operator is given by:

〈Tz〉 = ∑
σ,n,k

∑
lm,l ′m ′

A∗σ,n,k
α,lm Aσ,n,k

α,l ′m ′C
1,σ
lm,l ′m ′+

B∗σ,n,k
α,lm Aσ,n,k

l ′m ′ C2,σ
lm,l ′m ′+

A∗σ,n,k
α,lm Bσ,n,k

α,l ′m ′C
3,σ
lm,l ′m ′+

B∗σ,n,k
α,lm Bσ,n,k

l ′m ′ C4,σ
lm,l ′m ′ ,

(252)

where

C1,σ
lm,l ′m ′ = σ

√
4π
5 C2,0

lm,l ′m ′
∫

r2drU σ
l (r )U σ

l ′ (r ),

C2,σ
lm,l ′m ′ = σ

√
4π
5 C2,0

lm,l ′m ′
∫

r2drU σ
l (r )U̇ σ

l ′ (r ),

C3,σ
lm,l ′m ′ = σ

√
4π
5 C2,0

lm,l ′m ′
∫

r2drU̇ σ
l (r )U σ

l ′ (r ),

C4,σ
lm,l ′m ′ = σ

√
4π
5 C2,0

lm,l ′m ′
∫

r2drU̇ σ
l (r )U̇ σ

l ′ (r ),

(253)

and where C2,0
lm,l ′m are the Gaunt coefficients.
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Fresnel Equations

We use Maxwell equations for the propagation of light in an isotropic media,
characterized by a magnetic or crystalline asymmetry. Maxwell equations can be
written as

∇ × E = − ∂B
∂t ,

∇ × H = 1
c

∂D
∂t + 4π

c J ,

∇.D = 4πρ,

∇.B = 0.

(254)

Combining these equations with the equation of the current

J = σ̂E =
∑

i

σi jE , (255)

we obtain the Fresnel equations:

{
n2I − n2ssT − ε

}
E = 0 ⇐⇒ det

[
n2 − n2si s j − εi j

] = 0, (256)

where s is the wave vector of the transmitted wave, and n is the unit vector perpen-
dicular to the surface of the media form which the light is reflected. The incidence
of the light is described by the vector s0. We will use the orthonormal reference
frame described by the three vectors e1, e2 and n such that

e1 = (n × s0) × n,

e2 = n × s0.

The vectors n and e1 determine the incidence plan, and e2 is perpendicular to
this plan. In this reference frame, the wave vector of the transmitted wave s and that
of the incident wave are in the incidence plan, so that

s =
⎛

⎝
sin ϑ

0
cos ϑ

⎞

⎠ ,

and

s0 =
⎛

⎝
sin ϕ

0
cos ϕ

⎞

⎠ .
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We can rewrite the Fresnel equation in a matrix form:

⎛

⎝
n2 cos2 ϑ − ε11 −ε12 − n2

2 sin 2ϑ − ε13

−ε21 n2 − ε22 −ε23

− n2

2 sin 2ϑ − ε31 −ε32 n2 sin2 ϑ − ε33

⎞

⎠

⎛

⎝
E1

E2

E3

⎞

⎠ = 0. (257)

To solve this equation, one has to find the zeros of its determinant

det

⎡

⎣
n2 cos2 ϑ − ε11 −ε12 − n2

2 sin 2ϑ − ε13

−ε21 n2 − ε22 −ε23

− n2

2 sin 2ϑ − ε31 −ε32 n2 sin2 ϑ − ε33

⎤

⎦ = 0, (258)

n4
[
−ε33 cos2 ϑ − ε11 sin2 ϑ − (ε31+ε13)

2 sin 2ϑ
]

+n2
[
ε22ε33 cos2 ϑ + ε11ε33 + ε11ε22 sin2 ϑ − ε32ε23 cos2 ϑ − ε12ε21 sin2 ϑ

]

+n2
[

sin 2ϑ
2 (ε12ε23 + ε13ε22 + ε31ε22 + ε21ε32) − ε13ε31

]

+ε11ε23ε32 + ε22ε13ε31 + ε33ε12ε21 − ε11ε22ε33 − ε12ε23ε31 − ε21ε13ε32 = 0.

(259)
Using Snell law

n0s0 × n = ns × n ⇐⇒ n0 sin ϕ = n sin ϑ, (260)

we obtain:

n2 sin2 ϑ = n2
0 sin2 ϕ

n2 cos2 ϑ = n2 − n2
0 sin2 ϕ.

(261)

Taking into account the expressions (261) in (259) equation, we obtain:

n4
[
−ε33 − (ε31+ε13)

2 sin 2ϑ
]

+n2
[−ε11n2

0 sin2 ϕ + ε33n2
0 sin2 ϕ + ε22ε33 + ε11ε33 − ε32ε23 − ε13ε31

]

+n2
[

sin 2ϑ
2 (ε12ε23 + ε13ε22 + ε31ε22 + ε21ε32)

]

+ε11ε23ε32 + ε22ε13ε31 + ε33ε12ε21 − ε11ε22ε33 − ε12ε23ε31 − ε21ε13ε32

+n2
0 sin2 ϕ [ε11ε22 + ε23ε32 − ε12ε21 − ε33ε22] = 0.

(262)
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If we define that

a1 = −ε33,

a2 = (ε33 − ε11)n2
0 sin2 ϕ + ε22ε33 + ε11ε33 − ε32ε23 − ε13ε31,

a3 = ε11ε23ε32 + ε22ε13ε31 + ε33ε12ε21 − ε11ε22ε33 − ε12ε23ε31 − ε21ε13ε32+
n2

0 sin2 ϕ [ε11ε22 + ε23ε32 − ε12ε21 − ε33ε22] ,

b1 = ε31 + ε13,

b2 = ε12ε23 + ε13ε22 + ε31ε22 + ε21ε32.

(263)
Equation (262) becomes

(a1n4 + a2n2 + a3)2 = (n2 − n2
0 sin2 ϕ)n2

0 sin2 ϕ(b1n2 + b2)2. (264)

If we define that

x = n2,

c4 = a2
1,

c3 = 2a1a2 − b2
1n2

0 sin2 ϕ,

c2 = a2
2 + 2a1a3 + b2

1n4
0 sin4 ϕ − 2b1b2n2

0 sin2 ϕ,

c1 = 2a3a2 + 2b1b2n4
0 sin4 ϕ − b2

2n2
0 sin2 ϕ,

c0 = a2
3 + b2

2n4
0 sin4 ϕ,

we must then solve the following equation:

c4x4 + c3x3 + c2x2 + c1x + c0 = 0. (265)

This equation has, in principle, four different solutions. We choose n± and the
two corresponding vectors of propagations s±. Using the two values of n and s in
Eq. (257), we obtain the corresponding modes, i.e., for each value of n we obtain:

E = Et Aeiω( n
c sr−t), (266)

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε12

((
n2

2 sin 2ϑ + ε13

)
ε21 + (n2 cos2 ϑ − ε11)ε23

)
+(

n2

2 sin 2ϑ + ε13

) (
(n2 − ε22)(n2 cos2 ϑ − ε11) − ε21ε12

)

(n2 cos2 ϑ − ε11)
((

n2

2 sin 2ϑ + ε13

)
ε21 + (n2 cos2 ϑ + ε11)ε23

)

(n2 cos2 ϑ − ε11)
(
(n2 − ε22)(n2 cos2 ϑ − ε11) − ε21ε12

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(267)
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and

E = Et Beiω( n
c sr−t), (268)

where

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

ε12(n2 cos2 ϑ − ε11)ε23 +
(

n2

2 sin 2ϑ + ε13

)
(n2 − ε22)(n2 cos2 ϑ − ε11)

(n2 cos2 ϑ − ε11)
((

n2

2 sin 2ϑ + ε13

)
ε21 + (n2 cos2 ϑ − ε11)ε23

)

(n2 cos2 ϑ − ε11)
(
(n2 − ε22)(n2 cos2 ϑ − ε11) − ε21ε12

)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(269)
The continuity of the parallel component of the electric field to the surface

results in

(E i + E r ) × n = E t × n,

if

E i =
⎛

⎝
Ei(r )

1

Ei(r )
2

Ei(r )
3

⎞

⎠ eiω( n0
c s i(r ).r−t).

At the surface we get:

Ei
1 + Er

1 = Etε12(n2 cos2 ϑ − ε11)ε23+
(

n2

2 sin 2ϑ+ε13

)
(n2 − ε22)(n2 cos2 ϑ − ε11)

Ei
2 + Er

2 = Et (n2 cos2 ϑ − ε11)
((

n2

2 sin 2ϑ + ε13

)
ε21 + (n2 cos2 ϑ − ε11)ε23

)
.

(270)
For the normal component to the surface, we will use the discontinuity of the

electric displacement

ε0(Ei
3 + Er

3) = ε3i Ei
t + 4πΣ. (271)

Case of Non-magnetic Materials

We will write Eq. (257) for a non magnetic system as

⎛

⎝
n2 cos2 ϑ − ε11 0 − n2

2 sin 2ϑ

0 n2 − ε22 0
− n2

2 sin 2ϑ 0 n2 sin2 ϑ − ε33

⎞

⎠

⎛

⎝
E1

E2

E3

⎞

⎠ = 0. (272)
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This equation has two solutions:

n2
1 = ε22,

n2
2 = ε11ε33

ε11 sin2 ϑ+ε33 cos2 ϑ

. (273)

The corresponding eigenmodes are given by:

E 1 =
⎛

⎝
0
E
0

⎞

⎠ E 2 =
⎛

⎝
−ε33 cos ϑ

0
ε11 sin ϑ

⎞

⎠. (274)

In the case of a cubic system, where ε11 = ε22 = ε33, the two eigenvalues
are identical, and in this case there is no difference in absorption between the two
polarizations of light.

In the case of tetragonal lattice, we distinguish two situations: the first, where the
surface is perpendicular to the c axis, and the second situation, where the c axis is
perpendicular to the incidence plan.

• First case
ε11 = ε22 = ε �= ε33 = ε′ : the difference Δ = n2

2 − n2
1 depends on the angle

of incidence. If ϑ = 0 (k//c), Δ is zero. There is no difference between the two
modes, so for ϑ �= 0, Δ is not zero and is given by:

Δ = ε′ − ε

ε sin2 ϑ + ε′ cos2 ϑ
ε sin2 ϑ.

We have therefore two waves, the ordinary one corresponding to the first mode,
where the propagation speed v = c

n1
is independent of the incidence angle. The

extraordinary one, where propagation speed is depend on the angle v = c
n2

. Even
in the case where the system is non-magnetic, there is some difference between
the two modes, which will lead to a dichroic signal (Fig. 7).

Fig. 7 Two possible modes and transmission vectors in the case of a biaxial material like calcite
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• Second case
ε11 = ε33 = ε and ε22 = ε′ : there is always a signal for any incidence angle. The
difference Δ is also independent of the angle:

Δ = ε − ε′.

We can also see that for a non-magnetic system, there is also a dichroic signal which
depends on the crystal asymmetry.

Case of a Magnetic Material

Let’s consider a magnetic material, limited by it surface, with a normal vector n ,
and a magnetization along the c direction. Let us consider (1) the polar geometry,
where the c axis is parallel to the vector n , (2) the incidence plan is determined
by the vector n and the vector c, such that n⊥c, and (3) the transverse geometry
where the vector c is perpendicular to the incidence plan. The vector of incidence
and transmission, in the reference frame (e1,e2,n), can be written as:

s0 =
⎛

⎝
sin ϕ

0
cos ϕ

⎞

⎠ , (275)

s =
⎛

⎝
sin ϑ

0
cos ϑ

⎞

⎠ . (276)

Polar Geometry

In this geometry, we assume that the incidence plan is the xz plan. The dielectric
tensor can be written as24

ε =
⎛

⎝
ε ε1 0

−ε1 ε 0
0 0 ε′

⎞

⎠ . (277)

Fresnel equation becomes

⎛

⎝
n2 cos2 ϑ − ε −ε1 −n2 sin ϑ cos ϑ

ε1 n2 − ε 0
−n2 sin ϑ cos ϑ 0 n2 sin2 ϑ − ε′

⎞

⎠

⎛

⎝
E1

E2

E3

⎞

⎠ = 0. (278)

24 such that ε′ = εcc, ε = εaa and ε1 = εac
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The secular equation is then given by

n4 [ε′ cos2 ϑ+ε sin2 ϑ
]−n2 [ε2 sin2 ϑ+εε′ cos2 ϑ + εε′+ε2

1 sin2 ϑ
]+ε2ε′+ε2

1ε
′=0,

(279)
and accepts two solutions:

n2
1(2) = ε2 sin2 ϑ + εε′ cos2 ϑ + εε′ + ε2

1 sin2 ϑ ± √
Δ

2
[
ε sin2 ϑ + ε′ cos2 ϑ

] , (280)

where

Δ=[ε2 sin2 ϑ+εε′ cos2 ϑ + εε′+ε2
1 sin2 ϑ

]2−4
[
ε2ε′+ε2

1ε
′] [ε sin2 ϑ + ε′ cos2 ϑ

]
,

(281)
and the two modes are the eigenvectors associated to the eigenvalues n1 and n2.

In the particular case where ϑ = 0,

Δ = −4ε2
1ε

′2 =⇒
√

Δ = 2iε1ε
′, (282)

and

n2
± = ε ± iε1. (283)

The associated modes are given by

E 1 =
⎛

⎝
1
i
0

⎞

⎠ E 2 =
⎛

⎝
1
−i
0

⎞

⎠. (284)

Longitudinal Geometry

In this particular geometry the tensor matrix elements in the previous reference
frame are given by:

ε =
⎛

⎝
ε′ 0 0
0 ε ε1

0 −ε1 ε

⎞

⎠ , (285)

and Fresnel equation becomes

⎛

⎝
n2 cos2 ϑ − ε′ 0 −n2 sin ϑ cos ϑ

0 n2 − ε −ε1

−n2 sin ϑ cos ϑ ε1 n2 sin2 ϑ − ε

⎞

⎠

⎛

⎝
E1

E2

E3

⎞

⎠ = 0. (286)



300 M. Alouani et al.

Its secular equation is then

n4
[
ε cos2 ϑ+ε′ sin2 ϑ

]−n2
[
ε2 cos2 ϑ+εε′ sin2 ϑ+εε′ − ε2

1 cos2 ϑ
]+ε2ε′+ε2

1ε
′ =0.

(287)
The discriminant of this equation is given by

Δ=[ε2 cos2 ϑ+εε′ sin2 ϑ + εε′+ε2
1 cos2 ϑ

]2−4
[
ε2ε′+ε2

1ε
′] [ε cos2 ϑ+ε′ sin2 ϑ

]
.

This equation has the two following eigenvalues:

n2
1(2) = ε2 cos2 ϑ + εε′ sin2 ϑ + εε′ + ε2

1 cos2 ϑ ± √
Δ

2
[
ε cos2 ϑ + ε′ sin2 ϑ

] . (288)

Transverse Geometry

In this geometry the dielectric tensor matrix elements are the same as those given
by Eq. (285). However, the incident and transmitted wave vectors are, respectively,
given by

s =
⎛

⎝
sin ϑ

0
cos ϑ

⎞

⎠ , (289)

s0 =
⎛

⎝
sin ϕ

0
cos ϕ

⎞

⎠ , (290)

and Fresnel equation becomes:

⎛

⎝
n2 cos2 ϑ − ε 0 −n2 sin ϑ cos ϑ − ε1

0 n2 − ε′ 0
−n2 sin ϑ cos ϑ + ε1 0 n2 sin2 ϑ − ε

⎞

⎠

⎛

⎝
E1

E2

E3

⎞

⎠ = 0. (291)

Its secular equation is then

[
n2 − ε′] [n2ε − ε2 − ε2

1

] = 0. (292)

Its eigenvalues are given by

n2
1 = ε′,

n2
2 = ε + ε2

1
ε
,

(293)
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and the associated modes by

E 1 =
⎛

⎝
0
E
0

⎞

⎠ E 2 ∼
⎛

⎝
n2 sin ϑ cos ϑ + ε1

0
n2 cos2 ϑ − ε

⎞

⎠. (294)

General Case

In the case where the magnetization is in the plan, the incidence plan is determine
by the vector n and another surface vector u , making an angle π

2 − χ with the
magnetization (c vector in this case). To find the characteristic matrix elements of
the dielectric tensor, we apply a rotation of angle χ around the direction parallel to
the vector n :

ε′ = R−1εR,

where

R =
⎛

⎝
cos χ sin χ 0

− sin χ cos χ 0
0 0 1.

⎞

⎠ . (295)

We then obtain

ε′ =
⎛

⎝
ε cos2 χ + ε′ sin2 χ (ε − ε′) cos χ sin χ ε1 cos χ

(ε′ − ε) cos χ sin χ ε sin2 χ + ε′ cos2 χ ε1 sin χ

−ε1 cos χ −ε1 sin χ ε

⎞

⎠ , (296)

and

s =
⎛

⎝
sin ϑ

0
cos ϑ

⎞

⎠ , (297)

s0 =
⎛

⎝
sin ϕ

0
cos ϕ

⎞

⎠ . (298)

This transformation leads to the following Fresnel equation:

A

⎛

⎝
E1

E2

E3

⎞

⎠ = 0, (299)
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where

A =

⎛

⎜⎝
n2 cos2 θ − ε cos2 χ − ε′ sin2 χ −(ε − ε′) cos χ sin χ −n2 cos ϑ sin ϑ − ε1 cos χ

−(ε′ − ε) cos χ sin χ n2 − ε sin2 χ − ε′ cos2 χ −ε1 sin χ

−n2 cos ϑ sin ϑ + ε1 cos χ ε1 sin χ n2 sin2 ϑ − ε

⎞

⎟⎠ .

(300)

In calculating the eigenvalues and eigenvectors of Fresnel equation, we obtain
the indices of refraction and the corresponding modes.

Continuity Conditions

The Maxwell equations, combined with the constitutive equation of matter, lead to
the continuity conditions of field, at the interface separating the two medias defined
by their indices n0 and n. Those conditions are

1. The perpendicular to the surface component of the magnetic induction must be
continuous through the surface.

2. In presence of a charge surface distribution Σ, the perpendicular to the surface
component of the vector electric displacement must be discontinuous, and the
discontinuity is 4πΣ.

3. The parallel component to the interface of the electric field must be continuous.
4. In presence of surface current Js , the parallel to the surface component of the

magnetic field must be discontinuous, and this discontinuity is 4π
c J s × n .

Those conditions of continuity impose the equality of the phase of the propagations,
as produced by Snell’s equation. Starting from the preceding continuity equations
and assuming that that there is no induced surface charge and electric current, we
can relate the component of the incident, transmitted, and reflected electric field by
the following formulas:

(
Et

‖
Et

⊥

)
=
(

Tpp Tps

Tsp Tss

)(
Ei

‖
Ei

⊥

)
, (301)

and

(
Er

‖
Er

⊥

)
=
(

Rpp Rps

Rsp Rss

)(
Ei

‖
Ei

⊥

)
, (302)

where the indices i , r , and t correspond, respectively, to the incident, reflected, and
transmitted waves. R is the reflexion matrix and T is the transmission one, verifying:

R + T = 1.

The diagonal matrix elements of R and T are given by [143–145] :
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Rpp = n. cos ϕ − n0 cos ϑ

n. cos ϕ + n0. cos ϑ
,

Rss = n0. cos ϕ − n. cos ϑ

n0. cos ϕ + n. cos ϑ
,

Tpp = 2n0 cos ϑ

n. cos ϕ + n0. cos ϑ
,

Tss = 2n0 cos ϕ

n0 cos ϕ + n cos ϑ
,

(303)

and the non-diagonal elements by

Rps = −in0(n2 − n1). cos ϕ

(n. cos ϕ + n0. cos ϑ)(n0. cos ϕ + n. cos ϑ) cos ϑ
,

Rsp = ±Rps,

Tps = −Rps,

Tsp = −Rsp.

(304)

Thus, the knowledge of the dielectric tensor matrix elements together with the
geometry of the incident wave leads to the determination of the transmitted and
reflected electric fields.

Circular Dichroism of X-Rays

In this section, we will discuss the x-ray absorption. The diagonal elements of the
electric tensor are close to the permeability of free space (ε0 = n2

0). Since the dielec-
tric tensor is given by

ε = 1 + 4iπσ

ω
= 1 − 4πσ 2

ω
+ i

4πσ 1

ω
,

where σ is the optical conductivity tensor (σ 1 its real part, and σ 2 its imaginary part,
and ω is the frequency of the incident photons).

We would like to calculate the absorption coefficient of light for a sample of
width d. To proceed, we write the solution of the propagation equation of the two
modes (E 1 and E 2) :

E t (r , t) = E 0eiω( n
c s.r−t). (305)

If we use the solutions of Fresnel equation (for example, Eq. (293)), where n1 is
written as
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n2
1 = ε′ = 1 − 4πσ 2

cc

ω
+ i

4πσ 1
cc

ω
. (306)

Since ε is very close to unity,

4πσ 1

ω
� 1.

Consequently, the index of refraction n is given by

n =
√

ε′ ∼ 1 − 4πσ 2
cc

ω
+ i

2πσ 1
cc

ω
= α + i

2πσ 1
cc

ω
. (307)

Substituting the expression of n in Eq. (305), we obtain

E t (r , t) = E 0e− 2πσ1
cc

c .s.reiω( α
c s.r−t). (308)

The intensity of light absorbed by the sample is proportional to square of vector
E and is given by

I = |E 0|2e− 4πσ1
cc

c .s.r . (309)

We find Beer’s law, where the absorption coefficient is given by

μ = 4πσ 1

c
. (310)
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85. A. B. Shick, V. Drchal, J. Kudrnovský, and P. Weinberger, Phys. Rev. B 54, 1610 (1996). 264
86. A. R. Makintosh and O. K. Andersen, Electron at the Fermi Surface, ed. M. Springford

(Cambridge University Press, Cambridge, 1980). 264, 269, 270
87. D. Koelling and B. Harmon, J. Phys. C 10, 3107 (1977). 265, 266
88. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique, vol. I, chap. IV,
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Effect of Spin–Orbit Coupling on the Magnetic
Properties of Materials: Results

M. Alouani, N. Baadji, S. Abdelouahed, O. Bengone, and H. Dreyssé

Abstract This contribution concerning the effect of spin–orbit coupling on the
magnetic properties of materials is divided into two sections. In the first section
we review the method based on the density functional theory (DFT) within the
local density approximation (LDA) used to compute the electronic structure, the
magnetic anisotropy, the x-ray absorption spectra, and the x-ray magnetic circu-
lar dichroism. We give the major approximations used to derive the Kohn–Sham
equations with or without the Hubbard interaction for correlated orbitals. We give
also a brief introduction to the generalized gradient approximation (GGA). We
then provide a solution of the latter equations using the full-potential linear aug-
mented plane wave (FLAPW) basis set and discuss the so-called LDA+U method,
where the Hubbard U is included for localized orbitals. We show how the relativis-
tic effects, such as the spin–orbit coupling, can be introduced into band structure
calculations and show their effect on magnetism, i.e., magnetic anisotropy energy
(MAE),magnetooptical properties, and x-ray magnetic circular dichroism (XMCD).
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Then we show a brief derivation of the force theorem for the calculation of the
magnetic anisotropy as well as a description of its application to the MAE calcu-
lations and show the details of the calculation of the XMCD matrix elements in
the electric dipole approximation. The second section of this contribution includes
some applications of the method to the computation of the electronic, magnetic, and
spectroscopic properties of spintronics materials. In particular, we investigate the
electronic structure and x-ray magnetic circular dichroism (XMCD) of Sr2FeMoO6

(SFMO for short) and other useful ferromagnetic half-metals with 100% spin polar-
ization, materials useful for spin injection. In particular, we show that the spin–orbit
coupling reduces the spin polarization, while the intra-site electronic correlations
tend to increase it. For example, SFMO is found to be a half-metallic ferrimagnet
with a gap in the spin-up channel. The calculated spin magnetic moments on iron
and Mo sites confirm the ferromagnetic ordering and settle the controversy existing
between the earlier experimental works. The orbital magnetism at the Fe and Mo
sites agrees quite well with the recent experimental XMCD measurements. The
computed L2,3 XMCD at the Fe and the Mo sites compares fairly well with the
experiment. The XMCD sum rule computed spin and orbital magnetic moments
are in good agreement with the values obtained from the direct self-consistent cal-
culations. In the last application, we focus on the GGA+U treatment of the elec-
tronic and magnetic structure of Gd and Gd-related compounds, such as GdN and
GdFe2. We compare the calculated density of states to the experimental photoemis-
sion and inverse photoemission spectra (XPS and BIS) and determine the Fermi
surface with and without the Hubbard U and spin–orbit coupling. The GGA+U is
found to be the most appropriate for treating the 4 f Gd electrons. We have inves-
tigated the bulk properties and calculated the XMCD spectra at the L2,3 edges at
the Gd site of GdN. The agreement of the calculated spectra with experiment is
the indication of the relevance of the XMCD formalism within the one-electron
picture. The results also show that the ground-state electronic structure of GdN
is that of a half-metal. Finally our computational method is used to determine
the magnetic anisotropy aspect of Gd and its compounds GdN and GdFe2. Using
force theorem, we have calculated the MAE of Gd, GdN, and GdFe2 for differ-
ent directions of the magnetization. Indeed, owing to the nil spin–orbit interac-
tion of the 4 f half-filled shell, the force theorem is expected to be efficient for
Gd and Gd compounds’ MAE calculations. This theorem allows a considerable
computational effort gain since the spin–orbit coupling could be calculated only
for one self-consistent iteration. Once again, the GGA+U method is found to be
the most adequate approach for the force theorem calculations of the Gd MAE.
The GGA and GGA-core model treatments of the 4 f states have led to a wrong
MAE. It turns out that the electronic properties and the magnetic properties of
4 f systems are tightly related, and the 4 f electrons play a crucial role in the
computed magnetic anisotropy. Although the Gd MAE is found to be similar to
that of a typical 3d transition metal like hcp Co, the GdN and GdFe2 cubic crys-
tal MAEs are found to be different from that of a pure 3d cubic material like
fcc Ni.
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1 Magnetic Anisotropy of Transition Metal Compounds

Spectacular results have been obtained recently in the ground-state determination of
the magnetic anisotropy energy (MAE) of materials. Thin films of Ni on Cu(001)
have been found experimentally to display an unexpected set of magnetic phases. In
contrast to a simple description, the magnetization has been found to be in-plane,
i.e., lying in the (001) plane for the first few ad-layers of Ni. For increasing Ni
thickness it rotates perpendicular to the interface plane over, and finally, for much
higher Ni coverage, the magnetization rotates back in-plane due to a stronger shape
anisotropy. This behavior is linked to a tetragonal distortion of the Ni films. The
lattice mismatch between Ni and Cu is small enough to accommodate a perfect 2D
growth, but large enough to lead to a contraction of the Ni(001) films.

Using the spin-polarized Korringa–Kohn–Rostoker (KKR) method, Uiberacker
et al. [1] have described Ni films to a thickness up to 15 layers. Considering an
uniform relaxation, the spin reorientation occurs at about seven layers of Ni, in
good agreement with the experimental results (for the value of the lattice relaxation
and for the critical thickness of Ni). These band structure frameworks compute the
magnetic anisotropy energy as the sum of individual terms. In the precited work
[1], the different contributions of the MAE are clearly identified for the Ni/Cu(001)
system. The internal contribution (which acts as a bulk term) is counterbalanced by
the surface and interface term which favor in-plane orientation. When the dipolar
term is added, a subtle balance occurs. The description of the Ni films proposed by
Uiberacker et al. has been confirmed by Spisak and Hafner [2] where all Ni planes
are relaxed. In this latter work, the Vienna ab initio simulation package has been
used, and the equilibrium distances found are in agreement with [1], with an addi-
tional surface inward relaxation of 3% which should not affect the trends obtained
in [1]. In addition, Spisak and Hafner have demonstrated that the film’s structure is
probably more complex: the formation of a surfactant overlayer of Cu on top of the
Ni films is energetically favored, in agreement with LEED data.

When determining the magnetic anisotropy properties, atomic relaxations play
a key role. For that reason all-electron full-potential approaches are necessary; the
interatomic distances have not to be assigned a priori. The FP-LMTO method has
led to very interesting results. A presentation of such a framework can be found in
the contribution of Eriksson and Wills in [3]. For instance, Galanakis et al. [4] have
performed a systematical study of magnetic anisotropy energy of FCT Fe0.5Pd0.5

alloy versus the lattice parameters a and c; their results compare nicely with exper-
iments in thin films. This method has been used to determine the MAE of many
transition metal alloys within the local spin density approximation and the general-
ized gradient approximation [5]. Figure 1 shows the MAE of many transition metals
calculated within the LSDA and the GGA compared to the available experimen-
tal results [5]. We can deduce directly from this figure that both LSDA and GGA
produce the same tendencies as we pass from one system to another. But there are
systems like MnPt3, CoPt3, and MnAu4 where the two functionals present strong
deviations. For all the other binary alloys the MAE values calculated within the two
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Fig. 1 The local spin density approximation (LSDA) (filled circles) and the generalized gradient
approximation (GGA) (empty circles) calculated magnetic-anisotropy energy (MAE) of XY, XPt3,
and Mn(V)Au4 (X= Fe, Co, Mn; Y= Pd, Pt, Au) ordered alloys compared to experimental results
[5] (open triangles). The easy axis for the L10 structure alloys and the V(Mn)Au4 is the [001] axis
and for XPt3 the [111]. In the case of the FePt, CoPt, FeAu, and VAu4 alloys, the theory always
favors the perpendicular axis. The other binary alloys show different behavior depending on the
type of approximation to the exchange-correlation potential

approximations differ by less than 1 meV, but when the values are close to zero,
as is the case for FePd, it is possible that the LSDA and GGA predict a different
magnetization axis. The MCA results obtained using the LSDA and GGA are, in
most cases, different which led us to the conclusion that there is no general rule
favoring either LSDA or GGA as the better description of the MAE of magnetic
alloys. The calculated orbital moment anisotropy is similar for both LSDA and GGA
and cannot explain the differences in the calculation of the MAE. Nevertheless, from
this study it seems that the LSDA results are slightly in better agreement with the
available experimental results. To confirm this claim further experimental data are
needed.

These results indicate the present limitations of ab initio band calculations. Phys-
ical systems of interest usually include a large number of non-equivalent atoms
(few tens at least). The need of an ab initio method with a better CPU timescaling
with the number of atoms is necessary. The recent development of Beiden et al. [6]
allows new interesting possibilities. In this new approach [6, 7] a local interaction
zone (LIZ), embedded in a large supercell, for solving the quantum mechanical
problem is considered, while the Poisson equation is solved in the whole space,
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using a screened reference medium [8]. The KKR matrices become sparse and
thus a LIZ of more than thousand atoms can be considered. This real-space scheme
has only been tested for simple crystallographic arrangements but a priori it could
be used for much larger systems. The implementation of a full-potential version
which exists already for the standard KKR method [9] will make this approach an
attractive one.

2 Thin Films and Alloys

Ab initio band structure methods provide a nice tool to elucidate the behavior of
adsorbed atoms and are now widely used due to the availability of efficient numer-
ical codes [10]. It is largely recognized that interdiffusion occurs during the growth
of transition metal on a substrate. A recent paper [11] on the initial growth of Co on
Cu(001) combines an experimental study and a FPLAPW calculation to show that
Co atoms occupying substitutional sites in the Cu substrate act as pinning centers
for subsequent island nucleation. The description of magnetic nanostructures on
a noble metal Ag(001) has been also investigated by means of KKR, illustrating
the large number of possible magnetic arrangements [12]. For 4d and 5d elements,
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unexpected enhancement of the local magnetic moments is obtained. The adsorp-
tion on the (001) surface has been widely investigated (see for instance [13–15]).
Experimental results involving middle series transition metals, particularly Mn, are
still not clearly understood and a dense activity is developed [16]. The (111) cubic
surface also attracts interest since it displays subtler behavior due to frustrations of
antiferromagnetic coupling [16]. Figure 2 shows the Fe/W(110) surface and relaxed
Fe–Fe and Fe–W layers [17]. The FP-LMTO is capable of obtaining the correct spin
alignment of the Fe layers by calculating the MAE (see Table 1).

Table 1 Calculated Fe/W(110) magnetic anisotropy energy (MAE) for the one, two, and three Fe
layer systems. The MAE is decomposed into magnetic surface anisotropy (MSA), magneto-elastic
anisotropy (MEA), and shape anisotropy (SA) due to the interactions of the spins. In the case of
the two-layer system, the shape anisotropy rotates the magnetization in-plane

1ML 2ML 3ML

MSA+MEA 3.35 –0.05 1.45
SA 0.08 0.26 0.43
MAE 3.43 0.21 1.88

The determination of the electronic structure of semi-infinite ordered alloy
requires the same techniques used in the previously reported films’ studies. The only
change is a larger number of inequivalent atoms and, in some cases, the multiplicity
of numerical solutions [18]. For semi-infinite disordered alloys the coherent poten-
tial approximation [19] is definitely the right approach. Two contributions deserve
special notice [20, 21]. In [20], Turek et al. predicted a new class of magnetic mate-
rials. Taking two bulk non-magnetic transition metals such as V, Ru, Rh, and Pd,
they show that the (001) surfaces of the RuV, RhV, and PdV binary alloys in the
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Fig. 3 Theoretical XMCD spectrum for the Fe L2,3 edge of the ordered compressed fct FePd alloy
and of the disordered fcc alloy compared with the experimental result for the FePd thick film
deposited on MgO(001) at 623 K, see [22] for more details



Effect of Spin–Orbit Coupling 315

bcc structure are magnetic over a broad concentration range; the magnetic moments
are mainly located at V surface sites and are as large as 1 μB for alloy with 75% V
concentration. For FePd the disorder is shown to play a major role for the determi-
nation of the magnetic properties. Figure 3 presents the calculated Fe L2,3 XMCD
spectrum of the ordered compressed face-centered tetragonal (fct) alloy (c/a=0.954)
and of the disordered face-centered cubic (fcc) alloy together with the experiment
of the fct alloy. We notice that the spectrum of the disordered alloy is in a better
agreement with experiment than that of the ordered alloy. This is a clear evidence
that the disorder in the FePd alloy is important and should be taken into account for
the determination of its physical properties. The theory for the ordered alloy under-
estimates the L3/L2 branching ratio, L3/L2=1.12 (theory) and 1.32 (experiment),
while theory for the disordered alloy gives a branching ratio of 1.25 in much better
agreement with experiment [22].

3 Electronic Structure, XMCD of Sr2FeMoO6

Sr2FeMoO6 (in the following abbreviated to SFMO) is a case of special interest due
to its technological potential as a spintronics material and due to the many diverging
reports, both theoretical and experimental, on its electronic and magnetic structure.
SFMO is a magnetic metal with a gap in one spin channel. It is therefore a half-
metal with a Curie temperature TC of 418 K, exceeding room temperature. The half-
metallic electronic structure causes very high, in principle total, spin polarization of
the charge carriers. This, in turn, may give rise to a low-field magneto-resistive effect
based on inter-grain tunneling, which can be explained in the following way. In a
simple model of how the magneto-resistive effect comes about, imagine a system
with a microstructure consisting of half-metallic mono-domain grains dispersed in
an insulating matrix. When the magnetic field is zero, the magnetic moments of the
magnetic grains are randomly ordered and the tunneling from grain to grain becomes
low since the moments of two adjacent grains in general are not aligned. As the grain
magnetic moments align due to an increasing external magnetic field, the resistance
goes down. More important is a low coercivity of the material (otherwise one needs
a very large magnetic field in order to turn the grain magnetic moments) and a high
enough Curie temperature.

SFMO crystallizes in a body-centered tetragonal structure consisting of slightly
distorted oxygen octahedra with alternating Fe and Mo ions in the center. The voids
in-between the octahedra are occupied by Sr atoms.

The magnetic structure of SFMO single crystal was investigated by two groups
[23, 24] using x-ray magnetic circular dichroism at the L2,3 edges of Fe and Mo,
in which they obtain contradicting results regarding the moment induced in the Mo
site. Photoemission and x-ray absorption spectroscopic studies on the Mo-based
double perovskites concluded mixed valence state for Fe [25], whereas recent neu-
tron diffraction measurements report Fe3+ and Mo5+ valence states [26, 27]. On the
other hand, many other spectroscopic studies also demand Fe to be in the 3+ state
[28–31]. The experimentally observed magnetic structure is ferrimagnetic (FiM),
with large Fe spin moments antiparallel to small Mo spin moments.
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In the ionic model, the Fe atoms are in the 3+ valence state and the 3d shell is
exactly half filled, giving a spin moment of 5 μB and zero orbital moment per Fe
atom. The Mo atoms are monovalent with one d electron of t2g symmetry in the 4d
shell. If this electron were completely localized, it would result in a spin moment
of 1 μB on the Mo site. In the real material the Mo moments are quite small, and
one may therefore conclude that the Mo d electron is partly delocalized, leading to
quenching of both the spin and orbital moments. The half-filling of the Fe 3d shell
leads to an interesting effect. Since it is half-filled, only electrons of the opposite
spin can hop into the Fe d shell due to the Pauli principle. This means that we
must have an antiferromagnetic coupling between the Fe and Mo d states. In energy
terms, the kinetic energy in SFMO is thus minimized when the local Fe moments
are parallel to each other and antiparallel to the itinerant Mo spins, resulting in the
observed ferrimagnetic structure [32].

On a more detailed level, in order to explain the anomalously high Curie tem-
perature or the general stability of the magnetic structure, many models have been
suggested for the electronic structure, for example, a tight-binding dynamical mean-
field model [33], the presence of strong enhancement of the intra-atomic exchange
strength on the Mo site [34], or strong Coulomb correlation effects in both the Fe
3d and O 2p states [35].

It remains a fact that a simple DFT calculation using the experimental structure
and the minimal unit cell correctly reproduces the half-metallic gap and reasonable
values for the spin moments.

We have calculated the electronic properties, the x-ray absorption (XAS), and
XMCD spectra at the Fe L2,3 and Mo L2,3 edges of SFMO [36]. Using the the-
oretical XMCD spectra and the sum rules, we calculate the spin and orbital mag-
netic moments and compare them to the moments resulting from the direct self-
consistent calculation. The comparison with experiment allows us to understand
the magnetic coupling between the Fe and Mo sites in order to understand the fer-
rimagnetic ground state of SFMO. In particular, we have found that the Fe and
Mo spin moments are antiferromagnetically aligned in excellent agreement with the
experimental results. For the details of the calculations see [36].

The calculated partial density of states, shown in Fig. 4, agree well with earlier
calculations [34, 37–39]. The main features of the calculated DOS are summarized
below.

In the spin-up channel, the O 2p states are positioned between –8 and –2 eV rela-
tive to the Fermi level. The (nearly) cubic symmetry of the octahedral co-ordination
of the oxygen atoms around the transition metals splits, in a simplified picture, the
d levels into one peak of t2g states, and another peak of eg states, with the t2g states
having the lower energy. The hybridization between the crystal field split Fe t2g

and eg states with the O 2p states is clearly evident just below the Fermi level.
The narrow bands lying above the Fermi level are the Mo t2g states. Thus we have
a gap between the Fe eg states and Mo t2g states. In the spin-down channel, the
O 2p states are fully occupied and the states lying between –1 and 1.5 eV are
mainly Fe t2g and Mo t2g states, followed by the Fe eg and Mo eg states up to
4 eV.
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Fig. 4 Calculated
spin-resolved partial density
of states (DOS) of
Sr2FeMoO6 at the
experimental lattice constants
in units of states/eV/fu
(formula unit). The partial
DOS of 3d-Fe is the
continuous line, that of
4d-Mo is the dashed line, and
that of 2p-O is the dotted
line. The majority spins are
represented in the positive
scale part of the plot and that
of minority spins in the
negative part
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By comparing the spin-resolved partial DOS in Fig. 4 with a calculation where
the SOC is excluded [38], we find that the SO coupling induces a small splitting of
the Fe t2g and Mo t2g states. SFMO remains half-metallic with the SOC included,
which is in contrast to the Re-based double perovskites, where the inclusion of
SOC eventually destroys the band gap resulting in a pseudo half-metallic ground
state [40, 41]. A possible reason could be that the SOC parameter of Mo is slightly
smaller when compared to the 5d transition metal Re. In addition to that, the half-
metallic gap in SFMO is significantly larger than that of the Re compounds which
helps in preserving the half-metallic ground state. We now turn to a discussion of
the magnetic and orbital moments. The calculations give a total spin moment per
unit cell of 4 μB , in agreement with previous calculations. The Fe spin and orbital
moments are parallel, whereas the spin and orbital Mo moments are antiparallel, in
accordance with Hund’s third rule. In Table 2, we have listed the calculated mag-
netic moments for each atomic site. The calculated spin magnetic moment of 3.72
μB for Fe is in good agreement with the earlier values of 3.8 μB [37], 3.79 μB

[38], and 3.8 μB [39]. Also the orbital Fe magnetic moment of 0.042 μB is in good
agreement with the recent FP-LMTO results of Jeng and Guo (0.043 μB [39]). The
calculated spin moment of Mo atom, –0.29 μB , is also consistent with the earlier
results [38]. The orbital magnetic moment of the Mo site is found to be 0.020 μB

which is slightly lower than that obtained by Jeng and Guo [39]. Finally, we also
mention that the calculations give a minute induced spin moment on the oxygen
atom of around 0.09 μB .

The main results of the present work are the calculated x-ray absorption (XAS)
and XMCD spectra of Fe L2,3 and Mo L2,3 edges, shown in Figs. 5 and 6, respec-
tively. We convoluted the spectra using a Lorentzian followed by a Gaussian, both
of full-width at half maximum (FWHM) of 0.25 eV for Fe and 0.5 eV for Mo.
The Gaussian and Lorentzian broadenings represent, respectively, the experimental
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Table 2 Spin and orbital d magnetic moments in μB /atom for Sr2FeMoO6 obtained from the
self-consistent (SC) calculation and from the sum rules (SR) along with the experimental values
taken from [24]

Spin Orbital

SC SR Expt. SC SR Expt.

Fe 3.72 3.67 3.05±0.2 0.042 0.052 0.02
Mo –0.29 –0.23 –0.32±0.05 0.020 0.042 –0.05±0.05

Fig. 5 Calculated XAS and
XMCD spectra of Fe L2,3

edge (full lines) as compared
to the experimental data of
[24] (dashed lines). We have
used a FWHM of 0.25 eV to
broaden the spectra
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Fig. 6 Calculated XAS and
XMCD spectra of Mo L2 L3
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resolution and the width of the core hole. The calculated spin–orbit splitting of the
Fe 2p core states is 12.52 eV, in good agreement with the experimental separation
between the L2 and L3 edges of 12.5 eV [24]. The corresponding splitting for Mo
was found to be 106.5 eV. The number of d holes used to compute the Fe magnetic
moment using the sum rule is 4.

The upper panel of Fig. 5 shows the XAS spectra of Fe L2,3 edge and the lower
panel the XMCD spectra together with the experimental spectra of Besse et al. [24].
The calculations reproduce most features of the experimental spectra, but at the
qualitative level. We find that the L2 intensity is underestimated in the absorption
spectra. The same situation prevails in many other compounds [42] and can be
improved by taking into account the core–hole interaction.

Interestingly, at both Fe absorption edges in the experimental spectra of Besse
et al. [24] there is a slight doublet structure present, interpreted in the paper by
Besse et al. as signaling the presence of both Fe2+ (d6) and Fe3+ (d5) in SFMO.
In the XMCD spectra by Ray et al. [23], however, a corresponding doublet struc-
ture is not visible. We speculate that the doublet structure is sensitive to the exact
composition of the sample, e.g., the amount of anti-site disorder and/or oxygen and
other vacancies and not primarily connected to the intrinsic electronic structure of
ideal SFMO. This conclusion is supported by the self-interaction corrected calcu-
lations by Szotek et al. [43], which basically rule out the possibility of any Fe2+

valence in SFMO. They find that the Fe3+ valence is the most energetically favorable
one, with Fe4+ 0.83 eV more unstable and Fe2+ 1.66 eV more unstable than the Fe3+

valence.
The Fe XMCD spectrum shown in the lower panel of Fig. 5 reveals a sharp

signal indicating the large value of the Fe moment. Using the XMCD sum rules
on the calculated spectra, we find a Fe spin magnetic moment of 3.67 μB which
is slightly lower than what we get from the direct calculation, but still significantly
higher than experiment. The lower experimental spin moment is most likely due to
the Fe–Mo anti-site disorder [44], because in the ionic picture SFMO is expected
to have a total spin moment of 4 μB per formula unit due to a ferrimagnetic cou-
pling between the Fe3+ 3d5 and Mo1+ 4d1 electronic configurations. As for the
very small (0.052 μB) Fe orbital moment re-calculated from the spectra in the same
way, we find that it compares well with the direct calculation, but is much larger
than the experimental one. The XAS and the XMCD spectra of the Mo L2,3 edge
are shown in Fig. 6. The calculated spectra are in surprisingly good agreement with
that of Besse et al. [24], especially considering that the Mo moments are nearly
quenched in this system. Though the single Mo d electron is delocalized, an appre-
ciable electron density is still present at the Mo site which results in a pronounced
XMCD signal, evident in Fig. 6. The spin moment obtained from the XMCD sum
rule is somewhat smaller than the direct calculation and the experimental value.
As for the orbital moment, the sum rule produced a much higher value compared
to the direct calculation. The experimental value has a different sign, but because
the absolute error is as large as the value itself, it is very difficult to draw any
conclusion.
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4 Electronic Structure, XMCD, and Magnetic Anisotropy
of Rare Earth Compounds

4.1 Electronic Structure of Gd and GdN

4.1.1 Gadolinium

In the last few decades there have been considerable improvements in designing
and manufacturing electronic devices. Especially those based on the spin degrees of
freedom, labeled nowadays spintronic(s) devises. It is the functionalization efforts of
the electronic spin degrees of freedom together with the charge degrees of freedom
which led to such interesting electronic devices. In particular, mastering the spin
degrees of freedom might be beneficial at the nanoscale, increased data processing
speed, decreased electric power consumption, and increased integration densities
[45].

Nowadays mostly 3d magnetic materials are studied for such interesting appli-
cations while only few attention is paid to rare earth magnetic materials. Due to
their 4 f localized orbitals rare earth materials exhibit a strong magnetism. These
materials might be, therefore, promising candidates for the above-mentioned appli-
cations. Because of its half-filled 4 f shell, gadolinium (Gd) is certainly the most
important among these kinds of materials. With the evolution of computational
resources, modern electronic structure methods are going to be more and more used
for studying magnetic materials.

Since the pioneering work of Dimmock and Freeman [46] where the Gd elec-
tronic structure has been calculated using the core model for the treatment of the
4 f electrons, there has been a few more band structure calculations for Gd. In this
simple model, while the 4 f bands have been successfully removed from the conduc-
tion band at the vicinity of the Fermi level, the hybridization of the 4 f states with
the other states was not accounted for. Some years later, the self-consistent calcu-
lations of Sticht and Kubler [47] have shown that the standard LDA potential leads
to a smaller lattice parameter because of the spurious presence of the 4 f minority
states close to the Fermi level. Later, Temmerman and Sterne [48] have found a
very large sensitivity to the treatment of the extended 5p core states as semicore
states. Afterward, Singh [49] has shown that the LDA does not provide a fully
satisfactory description of Gd. This reflects particularly the complexity of the Gd
electronic structure due to the presence of 4 f electrons. The conduction electrons
of Gd consist of three kinds of electrons: the 4 f strongly localized electrons, the 5p
and 5s semicore electrons, and the itinerant 3d and 6s electrons.

In addition, it is unclear whether the Gd magnetism is that of a typical Stoner-
like magnetism [50, 51] or that of a Heisenberg-like magnetism [52]. It turns out
that the electronic and therefore the magnetic properties are far from clearly being
understood, and further theoretical investigations are therefore called for.

The failure of the LDA for the description of localized electron systems was
already proved, i.e., the so-called Mott insulators were found to be metallic within
the LDA calculations. Indeed, unlike in pure 3d transition metals, the Mott insulators
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3d electrons, such as NiO, are localized because of the presence of neighboring
oxygen. This means that an extra-Coulomb interaction between these electrons
should take place. It is this interaction which is missing in the LDA scheme and one
should therefore come up with a method which allows an appropriate representation
of those localized electrons.

During the last decade, first-principles calculations within the LDA(GGA)+U
methods have provided a good description and allowed a better understanding of the
electronic properties of strongly correlated 4 f electron materials and Mott–Hubbard
insulators. In this section we present results of LDA(GGA)+U calculations. The
choice of the J value of 0.7 eV is justified by the early electronic properties study
of Harmon et al. [53], within the APW method. They evaluated the strength of the
4 f -conduction electron exchange interaction inside the muffin-tin spheres for the
4 f –6s and 4 f –5d, and they obtained J4 f −5d of 0.5 eV and a J4 f −6s of 0.2 eV
and hence a total J of 0.7 eV. As stated in the previous section, the value of the
Hubbard interaction U is much more difficult to estimate because constrained LSDA
calculation does not necessarily provide the ultimate value to be used in an LDA+U
or GGA+U study. It is interesting to notice that a value of U larger by 1 eV than the
constrained one produced the experimental splitting between the spin up and spin
down of the 4f energy levels. However, to compare with the XPS and BIS data, we
had to rigidly shift the occupied and empty density of states by 1.7 eV toward higher
energies.

Figures 7 and 8 present our LDA+U and GGA+U total DOS calculations, which
are in good agreement with the XPS and BIS experimental results [54], after a rigid
shift of the occupied and empty density of states by 1.7 eV toward higher energies.
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Fig. 7 LDA+U total DOS; the thin grey (orange) curve is the spin-up part, the dashed (red) curve
is the spin-down part, the thick black curve is the sum of the up and down parts as compared to
the XPS and BIS experimental data (dotted black curve) of [54]. The calculated spectra are rigidly
shifted toward higher energies by 1.7 eV to facilitate the comparison with experiment. The DOS
broadened using a full-width at half maximum Gaussian smearing of 0.25 eV (For color figure, see
online version)
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Fig. 8 The same as the
previous figure but the
calculations are done within
the GGA+U method
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The large calculated exchange spin splitting of 11.97 eV obtained using the
LDA+U potential and that of 12.2 eV using the GGA+U potential is a direct
consequence of the U effect of 7.7 eV. The angular � resolved DOS’s (not pre-
sented here) showed that the pronounced peaks of the total DOS’s presented above
are almost of f character. In comparing our LDA(GGA)+U DOS’s with those of
the LSDA(GGA), calculated and reported in many recent papers [55–57] but not
reported here, we noticed that the minority (spin-down) 4 f states are shifted away
from the Fermi energy to higher energies, and the majority (spin-up) 4 f states
are shifted to lower energies giving rise to the experimental exchange spin split-
ting of � = 12.2 eV. Although the two methods LDA+U and GGA+U produced
a good description of the energy distribution of the electronic states, particularly
the energy positions of the minority and majority 4f states, the GGA+U result is
about 0.2 eV larger, in good agreement with the experimental data. We assign the
slight improvement of the GGA+U to the fact that the spin-dependent exchange-
correlation GGA potential describes a bit better the electron–electron interactions
involving the strongly localized and correlated 4f electrons. With the help of the
U interaction, the relative position of the 4f majority states with respect to the 4 f
minority states is in a better agreement with experiment leading to a good exchange
4f spin-splitting value. However, we cannot state for certain that the GGA+U is
significantly better than the LDA+U since the small relative accuracy of these two
methods can be debated. This is because the DFT error can be much larger than this
energy difference.

Through the band structure plots reported hereafter, we would like to convey the
adequacy of the GGA+U method, compared to the GGA 4 f -core model for the
description of the gadolinium electronic structure.

The two upper panels of Fig. 9 represent the GGA+U band structure without
including the SOC for the majority and minority spin states along high symmetry
directions for the positions of the high symmetry points in the BZ. The distinguish-
able dispersionless atomic-like character of the states located at about 2.7 eV above
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Fig. 9 The upper left and right panels represent, respectively, the GGA+U band structure plot
of the majority and minority spin states without SOC along some high symmetry directions. The
lower-left panel represents the total band structure (majority and minority spin states) including the
SOC, whereas the lower right panel represents the GGA total band structure (majority and minority
spin states) within the 4 f -core model including the SOC

the Fermi level for the minority spin states (top right and bottom left panels of Fig. 9)
and 9.5 eV below the Fermi level for the majority spin states (top left or bottom left
panels of Fig. 9) are that of the 4 f states as is the case experimentally. Despite the
crystallographic environment these states behave as in the free atom case due to
the fact that the 4 f electrons are tightly bound to the atom and hence do not overlap
appreciably with the neighboring atoms. It is worth mentioning here that the states at
the vicinity of the Fermi level are mostly of hybridized 6s–5d character. The 6s band
width is larger than that of 5d states which is similar to the situation in transition
metals, in agreement with the early results reported in [58]. The lower-left panel
shows the effect of the SOC on the GGA+U calculation, in addition to the lifting
of the degeneracy for some bands (because the spin is no longer a good quantum
number), it is easily seen that the splitting of the 4 f bands broadened the occupied
(majority) bands from 0.2 eV to around 0.8 eV and the unoccupied (minority) bands
from 0.3 eV to about almost 0.6 eV. This difference in the splitting of the majority
and minority parts can be explained by the large relativistic effects of deep states,
and the transformation of some 4 f band character to 6s and 5d band character via
hybridization effects, making the splitting mechanism more difficult for the minority
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electrons than for the majority ones. Apart from the effect of splitting, there is no
further large effect of the SOC because the 4 f spin-majority band is fully occupied
and the 4 f spin-minority band is almost completely empty.

To analyze further the hybridization mechanism between the 4 f states and the
6s and 5d ones, we reported in the lower-right panel of Fig. 9 the SOC 4 f -core
model bands to be compared to the previous SOC GGA+U calculation within the
4 f band model. From the upper and lower-right panels we can see that the majority
4 f state removal (in the 4 f -core model) does not affect the filled states and those
lying just above the Fermi level. Hence, the two models provide a similar descrip-
tion for all states lying up to 1 eV above the Fermi energy. However, the minority
4 f states’ (located at 2.7 eV) removal affects considerably the surrounding 6s and
5d bands. In particular, in the 4 f -core panel of Fig. 9 (bottom right panel), we
observe that along the high symmetry direction A–L, the band that starts from 2.4
eV at the A point and ends at 3.5 eV at the L point is almost of 5d character. It
starts much higher, in the GGA+U 4 f model, from 3.1 eV from the A point and
ends at 3.7 eV at the L point. This contraction and small shift of the s–d bands is
ascribed to the hybridization with 4 f bands. Although the 4 f -core model removes
the unphysical minority 4 f states contribution to the valence states, it neglects the
effects of hybridization of the f states with the other states. Therefore, the GGA+U
band model produces the experimental energy positions of the 4 f minority states
and reduces their hybridization with the other states and is more physical than the
4f -core model.

It is also worth noting that while the GGA+U or the LDA+U methods improved
considerably the spin splitting between the spin-up and spin-down 4 f electrons with
respect to the GGA results it did not affect the spin splitting of the 5d6s bands.
This splitting of about 1 eV is found in good agreement with the recent spin- and
angle-resolved photoemission result [59] of 0.9 eV. Thus our calculations partially
support their conclusion concerning the band structure nature of 5d6s states and that
the 4 f correlation does not change the dispersion of these bands below the Fermi
level.

It is of great interest to study the Fermi surface of gadolinium using different
types of approximations to describe the electron–electron interaction. In Fig. 10
we compared the GGA and GGA+U band structure at the vicinity of the Fermi
level along some high symmetry directions, and in Fig. 11 we plotted the three-
dimensional representation of the Fermi surface per spin of each band cutting the
Fermi level. The calculation is done using the GGA+SOC, the GGA, and GGA+U
without spin–orbit coupling. The first three rows of the figures (a), (b), and (c) are
the majority spin Fermi surfaces of the first three bands cutting the Fermi level, and
(d) and (e) are those of minority spins. The total Fermi surface for all bands cut-
ting the Fermi level is represented in the last row (f). To determine the quantitative
change of the Fermi surface computed using different ab initio methods, we used
the linear tetrahedron method to calculate the Fermi surface area of each band. One
has to add up over the full BZ the surface areas cutting each tetrahedron for each
band crossing the Fermi level. To obtain Fermi surface areas converged to within a
relative error of 10−4 we used 1372 k points in the irreducible BZ. The results of the
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Fig. 10 The upper and lower panels represent the comparison of the Gd band structure within the
GGA in grey (orange) and GGA+U (black) along some high symmetry directions. The spin up is
represented in the upper panel and spin down in the lower panel. The Fermi level is at the zero of
energy scale (For color figure, see online version)

calculation are displayed in Table 3. Notice that for the calculations including the
spin–orbit coupling, the spin is not a good quantum number. Because of the small
amount of spin mixing in each Fermi surface we can still use the spin-up and spin-
down notation. It is interesting to notice that the spin–orbit coupling reduces slightly
the areas of all Fermi surfaces, whereas the Hubbard U has a much important effect.
First, it reduces also the Fermi surface areas of both spin-up and spin-down bands
crossing the Fermi level. Second, because of the shifting of the energy bands toward
low energies (see Fig. 10) a new electron pocket with a sizeable Fermi surface area
appeared at the H high symmetry point. We can therefore conclude that both the
SOC and the U parameter have an effect on physical properties involving the Fermi
surface, like electronic and thermal transport or crystalline magnetic anisotropy. It
should be of great interest to study the effect of electron–electron interaction on the
dHvA frequencies and masses. We can already say that these frequencies which are
proportional to the Fermi surface cross-sectional areas will be reduced when either
the SOC or the Hubbard U is included in the calculations.

4.1.2 Magnetic Order of Gd

According to the experimental investigations of Jensen [60], it is known that the
localized spin moments of the gadolinium couple through a Ruderman–Kittel–
Yosida (RKKY)-type exchange interaction to form a ferromagnetic (FM) Heisen-
berg system with a bulk Curie temperature (Tc) of 293 K. In order to discuss the
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Fig. 11 Three-dimensional
Fermi surface per spin of
gadolinium calculated,
respectively, in GGA+SOC
(left column), GGA (middle
column), and GGA+U (right
column) methods. The (a),
(b), and (c) represent the
majority spin Fermi surfaces,
the (d) and (e) the spin
minority, and (f) the total
Fermi surface

Table 3 Calculated Fermi surface areas in a.u.−2 within the GGA, GGA+SOC, GGA+U, and
GGA+U+SOC. Notice that for the calculations with spin–orbit coupling, the spin is not a good
quantum number and therefore there is a small spin mixing in all the bands

10 down 11 down 12 down 25 up 26 up 27 up

GGA 0.109 3.157 0.018 0.710 1.258 0.000
GGA+U 0.242 1.895 0.000 0.522 0.908 0.590
GGA+SOC 0.000 2.903 0.000 0.792 1.393 0.000
GGA+U+SOC 0.000 2.290 0.000 0.618 1.319 0.000

ground-state magnetic configuration of FM gadolinium, we have carried out total
energy first-principles calculations for the FM and AFM configurations. The AFM
configuration calculations were done by reversing the magnetization sign of every
second close-packed plane of atoms along the c direction.
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Table 4 Total energy difference between the AFM (↑↓) and the FM (↑↑) configurations using
different approximations to the exchange and correlation all-electron potential

LSDA LDA+U GGA GGA+U

δE(↑↓−↑↑) (meV) –24.48 78.62 –20.00 70.93

The total energy differences δE(↑↓−↑↑) between the AFM configuration ↑↓ and
the FM ↑↑ one, recapitulated in Table 4, show that the LDA(GGA)+U favor the
experimental FM configuration over the AFM one. These results are in agreement
with the calculations of [57], using the force theorem. Those authors have shown
that within the LSDA(GGA), the f states strongly prefer the AFM order whereas
the p and d states prefer the FM order and concluded that this is due to the unphys-
ical partial occupation of the minority 4 f states. Using the LDA(GGA)+U and thus
removing the emphasized unphysical partial occupation of the 4 f states, our calcu-
lations provide the correct experimental FM order. Our results are also in qualitative
agreement with the results of [56]. Thus, our calculation supports the fact that the
force theorem, developed by Andersen and coworkers [61], which was initially used
to provide an analytical expression for the hydrostatic pressure of materials, works
quite well for producing the total energy differences between different magnetic
configurations.

4.1.3 Gadolinium Nitride

The emergence of spintronics and the great interest which aroused the scien-
tific community toward magnetic diluted semiconductors (DMS), particularly half-
metals because of their applications for spin injections, have motivated us to study
the GdN compound. Unlike the classical DMS, where the magnetism is due to 3d
electrons, GdN compound proposes a semi-itinerant magnetism due to the f elec-
trons. Furthermore, GdN, following the nature of the substrate on which it is grown,
covers a big range of electronic properties, half-metal, semimetal, or semiconductor.
The understanding of such systems properties is thus of interest to spintronics.

Within the same FLAPW computational framework we have carried out first-
principles calculations of the GdN electronic, magnetic, and structural properties.
The corresponding results show that the ground-state electronic structure of GdN is
that of a half-metal.

Figure 12 presents our GGA and GGA+U total DOS calculations compared to
the XPS experimental results [62]. The high peak of the strongly localized 4 f pro-
jected DOS is easily distinguishable from the rest of the DOS in both theory and
experiment. It is clear that the GGA energy position of the 4 f states is in total
disagreement with experiment. Therefore a GGA+U calculation using the values of
U = 9.9 eV and J = 1.2 eV produces the best agreement between the calculated
4 f states, and the corresponding experimental XPS data in either the energy posi-
tion (as an effect of the Hubbard U interaction) or the width of the 4 f DOS (as a
consequence of the exchange parameter J and somehow the SOC effect) are in good
agreement with the recently used values in the LDA+U FP-LMTO study of Larson
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Fig. 12 GGA+U total DOS
(full curve) for the optimal
value of U compared to the
XPS experimental data
(dotted curve) of [62] and to
the GGA calculation (dashed
curve) and for a smaller value
of U = 6 eV. The calculated
spectra are convoluted using
a 1.5 eV full-width at half
maximum Gaussian
broadening

et al. [63]. Notice that one has to optimize the value of U to describe the electronic
properties and that a value of somehow reasonable value of U = 6 eV, shown by the
dot-dashed curve, does not lead to the best agreement with experiment. This is the
reason for optimizing the value of U to produce as many electronic properties as
possible as in the work of Bengone et al. [64].

The contribution of the hybridized Gd 5d states and N 2p states lying just below
the Fermi level is somewhat broadened and shifted toward higher energies with
respect to experiment. The Gd 5s and 5p shallow states were treated as valence
semicore states using local orbitals [65]. The main disagreement between our results
and the experimental data is that of the energy positions of the 5p semicore states.
Nevertheless, the two peaks of the split 5p states are easily recognizable in our
calculated DOS and are in qualitative agreement with experiment.

The splitting of the 5p states into 5p3/2 and 5p1/2 with a 1.6 branching ratio
is due to the SOC effect. This branching ratio is smaller than the 2:1 experimental
one. The difference between these ratios could be the result of the self-interaction
contribution to the calculated exchange-correlation potential. The energy positions
of the 5p semicore states can be improved using the so-called Slater transition state
[66], as was used by Aryasetiawan and Gunnarsson [67] to study 3d semicore states
in ZnSe, GaAs, and Ge. Their Slater transition state calculated energies compare
favorably with those of the GW self-consistent LMTO method. It was shown that
both methods provide good agreement with experiment, with a slightly better agree-
ment for the GW-LMTO method. The main advantage of the Slater transition state is
that it physically simulates and accounts, in a transparent way, for a realistic descrip-
tion of intermediate states and charge distributions induced during the experimental
probe. We believe therefore that such a method is useful for providing the correct
energy positions of the 5p semicore states of gadolinium in GdN. While a detailed
calculation lies outside the scope of our study, a qualitative estimation of the change
in the binding energy of the 5p states in the presence of one or one-half hole was
carried out within an atomic calculation. We found that 1/2 hole produces an energy
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shift of 1.0 eV of the 5p states toward lower energies, with a SOC splitting of
4.48 eV between the 5p1/2 and the 5p3/2 states whereas the presence of one hole
produces a shift of 1.9 eV and a splitting of 4.54 eV. These estimations fall some-
how short of the required 2.5 eV and follow the same trend as the ZnSe 3d state
shifts of 3 eV as obtained in [67]. Therefore, a full supercell calculation of Slater
transition state, which allows for the valence electron screening of the core hole, is
desirable.

4.2 Magnetic Anisotropy of Gd, GdN, and GdFe2

The last part of our computational investigations is devoted to the magnetic
anisotropy aspect of Gd and its compounds GdN and GdFe2. The rotation or the
deviation of the magnetization in a large variety of materials, e.g., permanent mag-
netic materials, ultrathin films, low-dimensional magnetic nanostructures or atomic
chain, influences the magnetic and therefore the electronic properties of these mate-
rials. The energy required to rotate the magnetization of a magnetic crystal is defined
as the magnetocrystalline anisotropy energy (MAE).

Using the force theorem, we have calculated the MAE of Gd, GdN, and GdFe2

for different directions of the magnetization. Indeed, owing to the nil spin–orbit
interaction of the 4 f half-filled shell, the force theorem is expected to be efficient
for Gd and Gd compounds’ MAE calculations. This theorem allows a considerable
computational effort gain since the spin–orbit coupling could be calculated only for
one iteration.

Once again, the GGA+U method is found to be the most adequate approach for
the force theorem calculations of the Gd MAE. The GGA and GGA-core model
treatments of the 4 f states have led to a wrong Gd MAE. It turns out that the elec-
tronic properties and the magnetic properties of 4 f systems are tightly related, and
the 4 f electrons have a crucial role in the rare earth magnetic anisotropy.

In the last two decades, the force theorem [68] has been an important and efficient
tool for computing the MAE [69–71]. As proposed by Van Vleck [72] so early, the
magnetocrystalline anisotropy originates mainly from the SOC. Its variation might
lead to interesting tuning of the orbital magnetic moments and MAE of complex
materials and may lead to the violation of Hund’s third rule [73]. Indeed, the force
theorem-based calculations save an appreciable computational effort and computer
CPU time. This is because the simulation of the magnetization direction changes
via the SOC, which requires only one single iteration of the Kohn–Sham equations.
The basic idea of the force theorem is to introduce the spin–orbit interaction as a
perturbation to the scalar relativistic Hamiltonian. It is shown that the rotation of
the spins is such a tiny perturbation that the electron–electron interaction hardly
changes. We expect therefore that most of the contributions to the total energy
remain unchanged, and subsequently the total energy difference between two spin
configurations with the magnetization along two different polarization directions is
given approximately by the difference between the sums of the eigenvalues up to
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the Fermi energy. Because this change of the total energy using a frozen potential
approximation is given by the sum of one-electron energy difference [68], one can
calculate this difference, with less computational effort, by switching on the SOC
to diagonalize the relativistic Hamiltonian. This is the way in which we proceeded
during our evaluations of the MAE, i.e., we first make a self-consistent calculation
with a scalar relativistic potential without spin–orbit interaction, then we calculated
the eigenvalues including the spin–orbit interaction for a given spin axis without
allowing the self-consistent potential to change. Notice that one has to make sure
that the scalar relativistic calculations are converged with the same number of k
points as those used to determine the MAE.

4.2.1 The Gd (0001) Magnetization Easy Axis

In this section, we discuss the Gd MAE within the GGA+U method. Figure 13a
shows the MAE calculations for different angles θ , i.e., the difference of the eigen-
value sums as a function of the angle θ between the c axis and the magnetization
axis. The reference energy is at θ = 0◦. The GGA+U MAE calculations are in black
circles and those calculated according to the Bruno’s model are in violet squares
(Eq. 1). As can be easily seen from this figure, the minimum of the difference of the
eigenvalue sums is obtained for 0◦ and the maximum for 90◦. These results show
clearly that the easy axis of magnetization is lying at θ = 0◦ and the hard one at
θ = 90◦. These calculations were carried out using a sampling of around 16,000 k
points in the whole Brillouin zone. In order to justify the convergence of this Gaus-
sian broadening sampling [75], we have performed MAE calculations up to 18,000
k points in the BZ. Figure 13b represents the MAE convergence according to the
set of k points. This MAE is defined as the difference energy between the hard and
the easy axis of magnetization. The overall shape of the MAE presented in Fig. 13b

Fig. 13 The GGA+U calculated MAE of Gd as a function of the angle θ from the c axis (circles)
and the Bruno model MAE (Eq. 1) (squares) compared to the experimental one (solid curve) [74].
The continuous curves are guides for the eye
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shows that this latter is sensitive to the k points number up to the set of 16,224 k
points. The largest number considered is 18,928 k points and it yields a MAE that
deviates by less than 2% from the MAE using 16,224 k points. We have checked the
force theorem MAE by directly calculating the total energy including the spin–orbit
coupling in a self-consistent manner. The results of the calculations showed that
the MAE is about 32.14 μeV using 16,224 k points, in good agreement with the
converged force theorem calculation (see Fig. 13b). We note here that though the
force theorem allows a saving of considerable computational effort, it still requires
a considerable computational time because of the fine grid of k points one should
use to assess the tiny MAE.

Figure 14 summarizes the MAE calculations for the different ways in which
the 4 f electrons are treated. In order to compare the GGA+U (Fig. 13a) MAE to
the other methods this latter is represented with the GGA, and the GGA-core. It
is worth mentioning here the controversial debate concerning whether the Gd 4 f
states should be considered as localized core states or whether it should be allowed
to hybridize as band states ([76] and references therein). As it can be easily seen
from Fig. 14, the Gd MAE calculated within the GGA+U scheme is in much better
agreement with experiment (Fig. 13a). The value of 520 μeV of our MAE, calcu-
lated using the standard GGA potential, is in good agreement with the FP-LMTO
calculation of 571 μeV by Colarieti-Tosti et al. [77]. However, within our FLAPW
framework, the core treatment of the 4 f electrons leads to a MAE of 87 μeV, while
within the FP-LMTO one [77] it is of about only 24 μeV in disagreement with our
calculation. In order to understand the SOC magnetic anisotropy in more detail, we
have applied Bruno’s model [78] to calculate the Gd MAE. According to this model

Fig. 14 Calculated Gd MAE for the different treatments of the 4 f states. The calculation within
the GGA+U method is shown in black circles and is the same as that of Fig. 13. The GGA core,
where the 4 f states are considered as core electrons, is shown in red up triangles, while the standard
GGA, where the 4 f electrons are allowed to relax as valence bands, is shown in green down
triangles. Notice that the GGA and GGA-core curves are scaled, respectively, by a factor of 1/10
and 1/2 to fit into the graph. The continuous curves are guides for the eye (For color figure, see
online version)
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the MAE stems completely from the spin–orbit contribution and the anisotropy of
orbital magnetic moments and is given by

E A(θ ) = ΔE(θ, 0◦) = − ξ

4μB

(
[μ↑

orb(θ ) − μ
↓
orb(θ )] − [μ↑

orb(0◦) − μ
↓
orb(0◦)]

)
, (1)

where ξ is the spin–orbit parameter for 5d-Gd orbitals and μσ
orb the orbital moment

of the spin σ . We have presented in Fig. 13a (violet curve) the corresponding cal-
culations. The spin–orbit coupling parameter we have used to calculate the MAE
according to the Bruno’s model is that of the 5d orbitals and is found to be of
ξ = ξd = 71.15 meV. As can be seen from this figure the overall behavior of
the estimated MAE of the model is too similar to that of the GGA+U. The MAE
calculated according to Bruno’s model is somewhat situated between our GGA+U
calculations and the experimental one. Bruno’s model predicts a MAE maximum
of 30 μeV. Given the fact that the spin–orbit parameter ξ and the orbital moment
μσ

orb used in Eq. (1) are those of the GGA+U calculations, the agreement of the full
calculation with the model is not surprising. However, this implies that the MAE is
essentially due to the orbital anisotropy. Gd is such a complex metal, and we have
seen that the energy position of the 4 f states is crucial for the strength of the MAE.
We can only conclude here that once the 4 f levels are well positioned, the MAE is
mainly due to the orbital moment anisotropy as suggested by Bruno’s model.

Bruno’s model validity for describing the spin–orbit magnetic anisotropy of Gd
should reflect the fact that the magnetic anisotropy of Gd is too similar to that of
a typical 3d transition metal such as hcp Co. However, there are additional terms
which are related to the magnetic dipole operator due to the anisotropy of the field
of the spin. This additional contribution was derived by van dar Laan [79]. The
strong magnetic moment of the 4 f electrons might give rise to this latter contribu-
tion. The resulting exchange field of that 4 f spin is large enough to be sufficient to
polarize significantly the remaining conduction electrons. In others words, the 4 f
magnetic field makes, in particular, the Gd 5d magnetic moment parallel to that of
the 4 f . Despite this high magnetic field, the van dar Laan contribution for Gd is
found to be negligible compared to that expected from Bruno’s model. In fact, this
contribution is only considerable for non-half-filled systems where spin flips among
the 4 f electrons occur.

However, though the GGA+U calculations using the force theorem have repro-
duced the experimental magnitude of MAE of 34 μeV, they did not show that the
easy axis of the magnetization makes 20◦ away from the c axis as experimentally
observed, instead they show that it is along the c direction. If we believe our cal-
culation, which is in agreement with Bruno’s model and in disagreement with the
FP-LMTO calculation using 4 f states as core states [77], then the deviation of the
magnetization from the c axis could be only explained if one invokes symmetry
breaking lattice imperfections of the hcp structure of Gd, like presence of intrinsic
defects, impurities, or dislocations. We suspect the erroneous GGA energy positions
of the 4 f minority states [76] to be at the origin of the corresponding predicted large
MAE. The presence of these states near the Fermi level leads to the erroneous MAE.
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The integration of the one-electron energies includes an extra contribution coming
from a strong mixing of the 4 f states with the other states at the Fermi level. Using
the GGA+U method these 4 f states are moved away from the Fermi level (U effect),
resulting in a more realistic assessment of the MAE. The MAE is therefore sensitive
to the electronic structure around the Fermi level and a better representation of the
electronic structure could lead to a precise evaluation of the MAE. Compared to the
GGA and GGA-core, the GGA+U method is once more the best one for the MAE
calculations. Given the adequacy of the GGA+U, we have proceeded in the same
way to calculate the MAEs of GdN and GdFe2.

4.2.2 GdN and GdFe2 Magnetic Anisotropy

In order to get insight into the magnetic anisotropy of Gd compounds, we have
applied the force theorem to calculate the MAE of the GdN pnictide and the metallic
compound GdFe2. Using the GGA+U method, we have recently shown that the
GdN compound is a half-metal for the experimental lattice constant [80]. A better
understanding of the magnetic anisotropy of this compound would be useful for
future spin-injection applications.

In this section the MAE, E A(θ ), is defined as in the previous section: E A(θ ) =
Eθ,φ − E0◦,0◦ . Unlike Gd, the GdN compound crystallizes in the cubic rock-salt
structure and its magnetic anisotropy will depend not only on θ but also on φ. In
order to determine the easy and the hard axes of magnetization, we have calculated
the MAE as a function of spherical coordinate angles θ or φ by keeping one of them
fixed and varying the other one.

Figure 15 shows the MAEs of GdN and GdFe2 as a function of the spherical
coordinate angles θ or φ. The black circles curve in Fig. 15a represents the GdN
MAE versus θ for φ = 0◦, the red up triangles curve in the same figure represents
the GdN MAE versus φ for θ = 55◦. According to the black circle curve, the easy
axis of magnetization is along the direction (001) defined by (θ = 0◦, φ = 0◦), and
according to the red up triangles curve the hard axis of magnetization is along the
direction (111) defined by (θ = 55◦, φ = 45◦).

The GdFe2 MAE (see Fig. 15c,d) is found to exhibit a similar behavior to that
of GdN MAE with the same axis of easy and hard magnetization, but with a higher
MAE. The GdN MAE is only of 0.38 μeV, while that of the GdFe2 is of about
9 μeV. It is worth mentioning here that although Gd monocrystal MAE is very
similar to that of a 3d transition metal, the MAEs of its GdN and GdFe2 compounds
seem to be different from that of a cubic transition metal, like Ni. It is well known
that in a fcc transition metal like Ni, the (111) direction is that of the easy axis of
magnetization and the hard axis is found to lie along one of the symmetry equivalent
(001), (010), or the (100) directions. Our results suggest the opposite for GdN and
GdFe2 compounds. This peculiar behavior of the magnetic anisotropy of the Gd
compounds shows that even in the presence of another non-magnetic (N) or mag-
netic (Fe) atoms is the Gd strong magnetism which manages indirectly the magnetic
anisotropy in these compounds. Indeed, because of the zero spin–orbit coupling of
the 4 f half-filled shell, the 4 f magnetic moment should not be involved directly
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Fig. 15 The GdN and
GdFe2; (a) the GGA+U
calculated MAE of GdN, (b)
the Bruno model estimation
of the GdN MAE, (c) the
GGA+U calculated MAE of
GdFe2, (d) the Bruno model
estimation of the GdFe2
MAE. These MAE’s are
calculated as a function of the
angles θ , φ for varying φ

while keeping θ = 55◦ in red
triangles and varying θ while
keeping φ = 0◦ in black
circles. The continuous
curves are guides for the eye
(For color figure, see online
version)

in the MAE but only through hybridization and polarization of the other valence
orbitals. One could therefore easily notice that the 4 f strong magnetic moment is
to some extent decoupled from the crystal structure. However, due to the strongly
localized character of these orbitals, the 4 f states carry a strong magnetic moment
that polarizes strongly the remaining valence electron bands. Therefore, despite
their strong localized character and zero orbital moment, their energy positions in
the band structure are directly related to the strength of MAE. As discussed in the
previous section, there is a big difference between the GGA+U MAE and the GGA
or the GGA-core MAEs, i.e., one is left with a wrong magnetic anisotropy of three
times that of the GGA+U if the 4 f orbitals are prevented to hybridize correctly
with the other orbitals, and one order of magnitude if they hybridize too much,
like in the GGA calculation. In the case of the GdN compound not only the 5d-Gd
orbital but also the 3p-N orbitals would be affected by the 4 f exchange magnetic
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Fig. 16 (a) The GGA+U
calculation of the MAE and
(b) the corresponding
Bruno-model determination
of the MAE for a Gd crystal
with an fcc structure. The
continuous curves are guides
for the eye

field. This happens because of the hybridization effect of the 5d-Gd orbitals with
2p-N orbitals [80]. For the GdFe2 compound the same scenario happens to the
3d-Fe orbitals. This interesting property would make of Gd a good candidate for
high-performance ferromagnets. Indeed, if we could make materials with different
4 f energy positions in order to change the hybridization and induce large spin polar-
ization in other orbitals, we will be able to tune the MAE of Gd magnetic materials.
In order to simulate the effect of the crystal symmetry and the presence of nitrogen
on the magnetic anisotropy of Gd we have carried out a GGA+U calculation for the
MAE of the Gd fcc crystal. The calculations are performed using the same lattice
parameter of the GdN and the same GGA+U parameters (U and J) of the Gd hcp
crystal. Figure 16a,b represents the GGA+U MAE together with that of the Bruno
model. From this figure one can easily recognize a magnetic anisotropy with the
same characteristics of a typical 3d material such as Ni. Both Fig. (16a,b show that
the easy axis of magnetization for an fcc Gd crystal is that of the (111) direction.
Once more the magnetic anisotropy of a pure Gd is too much similar to that of a
transition metal. Therefore, the Gd fcc material would be a very good candidate
for industrial application of the magnetic anisotropy with the advantage of a strong
magnetic moment.

4.3 XMCD of GdN

The appreciable progress in spectroscopic techniques such as those of the x-ray
magnetic circular dichroism (XMCD) and the several investigations this spec-
troscopy had led to have motivated our implementation of the XMCD within the ab
initio Fleur code [81] using the full-potential linear augmented planewave method
(FLAPW) [82, 83]. In fact, XMCD spectra have two useful properties for magnetic
materials characterization. The first one is that of the chemical or atomic selectivity,
i.e., each chemical element and each core orbital has its own absorption edge(s), the
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second one is that of the final shell or of the final states selectivity, i.e., the transitions
involved during the x-ray absorption are selected according to the selection rules.
Since the initial states are chosen, only the transitions for which the final states
satisfy the dipolar selection rules may happen. In this respect, we should remind the
powerful advantage of the XMCD sum rules. Nowadays, there are many techniques
for magnetic properties measurement. Most of them are sensitive to the total magne-
tization and do not distinguish between the different atomic contributions of alloys
or their magnetic spin and orbital moments. With the derivation of the sum rules
by Thole and coworkers [84, 85] XMCD spectroscopy became the most efficient
technique for studying magnetic materials. The sum rules allow the extraction of
both the spin and orbital magnetic moments from the absorption spectra. In order to
figure out the spin and orbital moments from the x-ray absorption spectra we have
implemented these sum rules.

X-ray spectroscopy is one of the most useful and powerful methods used in
modern experimental research of magnetic materials. In particular, x-ray magnetic
circular dichroism (XMCD) characterized the magnetic properties of a large variety
of rare earth materials [62, 86, 87]. A parallel theoretical effort is therefore of great
interest since the dichroic spectrum is the result of a microscopic radiation–matter
interaction. Due to the major presence of the 5d-Gd states (which are strongly
hybridized with the N 2p states) in the conduction (valence) bands of GdN, the rev-
elation of these states by means of XMCD would be enriching. In this part, we com-
pare our calculated L2,3 x-ray absorption and XMCD spectra with those of the recent
experimental work of Leuenberger et al. [86] for GdN bulk-like layers. Our spectra
are calculated within the electric-dipole approximation using polar geometry [76].
The calculated cross-sections of the Gd L2 and L3 absorption coefficients involving
the electronic transitions from the 2p1/2 and 2p3/2 core levels, respectively, toward
the Gd 5d and 6s unoccupied conduction states are presented in Fig. 17 together
with the experimental spectra obtained by Leuenberger and coworkers [86]. In order

Fig. 17 The GGA+U
calculated XAS absorption
spectra and XMCD spectra
(full blue curve) compared
with the measured spectra
(dotted red curve) of [86], (a)
and (b) represent the XAS
absorption spectra, (c) and
(d) the XMCD spectra of
GdN at the Gd L3 and L2

edges. The calculated spectra
are convoluted using a 2.5 eV
full-width at half maximum
Gaussian broadening (For
color figure, see online
version)
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to compare the calculated spectra with experimental results, whose intensities are in
arbitrary units, we adjusted only the height and the energy position of the first peak
of the L3 absorption edge to the experimental one and scaled the L2 absorption edge
and corresponding XMCD spectra accordingly. Our XAS spectra are in surprisingly
good agreement with the corresponding experimental spectra, e.g., our XAS spectra
reproduce not only the shape of the main peak but also the branching ratio of the
L3 and L2 edges of 2:1 emanating from the electronic population of the 2p1/2 and
2p3/2 core states of 2 and 4 electrons, respectively. It is worth mentioning here
that this ratio has not been accessible within the recent LMTO calculations in the
atomic sphere approximation (ASA) and a frozen core approximation of Antonov
et al. [88]. Those authors have added a step function to the XAS spectra at the L2,3

edges of Gd to achieve a good agreement with the same experimental data [86]. This
shows that the FLAPW method provides more realistic core and conduction state
wave functions used to calculate the electronic transition matrix elements from the
2p1/2 (L2) and 2p3/2 (L3) core states toward the 5d and 6s unoccupied conduction
states. The branching ratio of the two opposite peaks of the L3 XMCD spectrum,
due to the difference of the DOS resulting from J = 5/2, m j =–5/2 and –3/2 and
J = 5/2, m j = 5/2 and 3/2, d splitted states, is much larger than that of Antonov
et al. [88] but is still smaller than experiment [86]. The difference between the two
calculations could be due to a more accurate evaluation of the electronic transition
matrix elements using the FLAPW method, because the partial DOS alone without
dipole matrix elements will result in a branching ratio of 1:–1 (see [88] for further
details). Similar, but opposite, branching ratio is obtained for the L2 MCD spectrum.

5 Conclusion

To conclude, we have shown that the new developments of ab initio methods have
allowed a quantitative determination of physical properties of magnetic materials.
For the magnetic anisotropy energy the MAE results obtained using the LSDA and
GGA are in the most cases different which led us to the conclusion that there is no
general rule favoring either LSDA or GGA as the better description of the MAE of
magnetic alloys. However, for Gd and GdN the GGA+U or the LDA+U methods
describe correctly both the experimental XPS and BIS. The LDA+U and GGA+U
methods were able also to provide the correct magnetic configuration of gadolinium.
Both LDA+U and GGA+U produced smaller Fermi surface areas than the LDA
or the GGA methods. This could motivate further first-principles calculations of
the other physical properties of gadolinium or related compounds using either the
GGA+U or the LDA+U.

For GdN the electronic structure explorations provided the optimal U and J
parameters (U = 9.9 eV, J = 1.2 eV) that allowed the GGA+U method to describe
approximately the experimental XPS. We have shown that the spin-dependent x-
ray absorption cross-section, implemented within the electric-dipolar approxima-
tion, describes nicely both the XAS and the XMCD at the L2 and L3 edges in
good agreement with the experimental spectra [62] without need for quadripolar
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transitions, showing indirectly that in gadolinium compounds the quadripolar tran-
sitions are marginal. The GGA+U and GGA calculated relative total energies are
very similar due to the absence of the 4 f states in the vicinity of the Fermi level in
both calculations.

We have carried out first-principles calculations of the MAE within the GGA,
GGA-core, and GGA+U methods for the purpose of representing accurately the
4 f electrons of Gd. It is shown that the MAE is very sensitive to the electronic
structure details at the Fermi level, i.e., the failure of the GGA method to account
for the correct 4 f energy position results in an overestimation of the Gd MAE.
To the contrary, the GGA+U, which produced the best position of the 4 f states of
Gd, reproduced the best MAE of Gd. Indeed, the force theorem MAE results of the
GGA+U produced the best agreement with the experimental MAE magnitude. The
results of GGA+U are also in good agreement with Bruno’s model, where the MAE
is obtained from the anisotropy of the orbital magnetic moments. The calculation
did not, however, find any deviation of the easy axis from the crystal c direction as
shown in experiment and in the calculation of Colarieti-Tosti and coworkers [77].
Based on our GGA+U calculations, Bruno’s model, and the symmetry of the hcp
lattice, we did not find any good argument for the deviation of the easy axis from
the hcp crystal c direction. We can only speculate that this deviation might be the
result of symmetry breaking imperfections in the hcp structure.

The comparison of the GGA-core MAE and the GGA+U MAE with experiment
has indirectly demonstrated that the 4 f hybridization with the rest of the valence
orbitals, resulting in an induced polarization, is the key parameter for the tuning of
the MAE of Gd- or Gd-based compounds. This parameter is tuned by the energy
position of the 4 f states in each compound. Indeed, within the GGA+U scheme we
have shown that for both GdN and GdFe2 compounds, the Gd 4 f states through
hybridization and induced strong polarization of, respectively, the nitrogen p and
Fe 3d states change drastically the MAE. Unlike 3d transition metals fcc structure
like Ni, GdN, and GdFe2 magnetizations are found to lie along one of the symmetry
equivalent (100), (010), or (001) direction. It will be of great interest to perform
experimental measurements of MAE for GdN or GdFe2 to check our theoretical
predictions.

In addition, many physical properties of thin films are now becoming possible to
understand by means of ab initio calculations. Namely, adsorbed atoms on surfaces
[13–15], pinning centers for cluster nucleation [11], as well as the magnetic state of
surfaces [12, 16].
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Nanostructural Units in Disordered
Network-Forming Materials and the Origin
of Intermediate Range Order

C. Massobrio

Abstract Disordered network-forming materials are characterized by structural
order extending well beyond the first shell of neighbors. For these reasons, reli-
able atomic-scale modeling is ideally suited to complement experiments in the
search of the microscopic origins of this behavior. A key to understand why these
systems have specific structural properties is to focus on the nanostructural units
by which they are composed. By analyzing the role played by these units, one is
able to put forth a valuable rationale accounting for the occurrence of intermediate
range order. In this review, we present recent results obtained via first-principles
molecular dynamics on a set of disordered network-forming materials, with spe-
cial emphasis on the prototypical system GeSe2. In a short introduction we begin
with explicit examples of differences, at the structure factor and pair correlation
level, between networks exhibiting intermediate range order and those purely dis-
ordered at any length scale. Concerning our theoretical approach, we rely on den-
sity functional theory and first-principles molecular dynamics to follow the time
trajectories at finite temperature of these networks and obtain statistical averages
to be compared with the experimental quantities. Specific methodological issues
pertaining to the simulation of disordered materials are analyzed in detail (size
of the computational cell, role of exchange–correlation functional, and production
of an amorphous phase). Then, three specific points are addressed by consider-
ing both experimental and simulation results: first, the atomic-scale signature of
intermediate range order as it manifests itself via the appearance of the first sharp
diffraction peak in the total neutron structure factor; second, the correlation exist-
ing between fluctuations of concentration on the intermediate distances scale and
the shape taken by the partial structure factors; and third, the establishment of the
nanostructural units responsible for the occurrence of the first sharp diffraction peak
in the concentration–concentration structure factor. All these examples are substan-
tiated by extensive reference made to existing and ongoing first-principles molecular
dynamics simulations.
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1 Introduction

By its very definition, a disordered system is characterized by the loss of structural
order on long-range distances, while a reminiscent order subsist at short distances,
typically involving nearest neighbors. Disordered network-forming materials, such
as those belonging to the AX2 family (A Ge, Si: X O, Se, S), are notable excep-
tions to this rule, since they feature intermediate range order (IRO) extending on
distances in the range 5–15 Å [1–4]. Is there a specific signature indicating the
establishment of the IRO and readily accessible to both experiments and computer
modeling..? We find instructive to open this review by addressing this question
directly through the observation of the total neutron structure factor ST (k) for liquid
GeSe2 at T = 1, 050 K and T = 1, 373 K. These quantities have been measured
by the team of P.S. Salmon at different temperatures and calculated by the present
authors by using first-principles molecular dynamics (FPMD), as detailed later in
this same review. Neutron scattering data at T = 1, 050 K can be found in [5] and
the corresponding FPMD calculations in [6]. Analogously, results at T = 1373 K
are available in [7] (neutron scattering experiments) and in [8] (FPMD calculations).

In both experiments and theory, the aim is to correlate changes in the profile of
the total neutron structure factor to specific structural features, to be identified by
observing the corresponding behavior of the pair correlation functions GT (r ). Both
ST (k) at T = 1, 050 K and T = 1, 373 K are characterized by a double peak in the
region 2 Å−1 < k < 4 Å−1, followed by a damped oscillating pattern for larger val-
ues of k (Fig. 1). A striking difference is noticeable for k < 2 Å−1 and, in particular,
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Fig. 1 Total neutron structure factors for liquid GeSe2 at T = 1, 050 K and T = 1, 373 K. Open
circles: experimental results at T = 1, 050 K [5] and at T = 1, 373 K [7] Full line (upper part)
and dotted line (lower part): FPMD calculation, T = 1, 050 K [6], T = 1, 373 K [8]
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at k ∼ 1 Å−1, where a prominent peak appears at T = 1, 050 K and becomes negli-
gible at T = 1, 373 K. By terming this feature FSDP (first sharp diffraction peak),
one underlines its peculiar location in k space, associated to positions in real space
typical of next-nearest neighbors interactions, i.e., representative of intermediate
(as opposed to short) range order. This point can be better understood by taking
advantage of the relationship k · r ≈ 7.7 that allows to relate the position r of a
peak in real space to the position k of a corresponding peak in Fourier space [the
above relationship being based on the location of the first maximum of the spherical
Bessel function j0(kr )]. By inserting the value k ∼ 1 Å−1 in k · r ≈ 7.7, it appears
clear that a structural order involving distances as large as ∼ 8 Å exists at T =
1, 050 K but it becomes much smaller at T = 1, 373 K where the intensity of the
FSDP vanishes.

It is worth pointing out that the relationship between the FSDP and specific
structural arrangements has long been the object of several interpretation schemes
[1–3, 9–22]. Two of them are frequently invoked [1, 18]. The first considers the
FSDP as a distinct signature of crystalline-like layers, its position being related to
the interlayer separation [11–14, 18]. In particular, it was emphasized that quasi-
lattice planes do occur in amorphous silica [18]. The second approach highlights the
occurrence of characteristic low-density regions in covalent glasses, by successfully
accounting for the position of the FSDP in a variety of AX2 disordered systems
[1, 10, 3]. In this picture, basic structural units (“clusters”) are decorated by inter-
stitial “voids,” leading to correlation distances typical of IRO. The general validity
of such models for the appearance of the FSDP in the total neutron structure factor
has been recently tested within the framework of accurate first-principles molecular
dynamics calculations [23].

Observation of the corresponding GT (r ) in real space shows a more structured
profile of the total pair correlation function at lower temperatures, consistent with
the presence of higher correlation among neighbors. This is somewhat expected,
but it does not explain the reasons underlying the appearance of the FSDP at
T = 1, 050 K and its absence at T = 1, 373 K, since the patterns observed in
Fig. 2 are also encountered in systems that do not exhibit any signature of IRO.
Given this open issue, a more refined analysis based on structural units is very
much needed to understand the microscopic origins of the IRO in connection with
the atomic structure of disordered network-forming materials (DNFM hereafter).
DNFM materials can be considered as collections of well-defined units, linked to
each other so as to obtain the best compromise between chemical order (absence
of homopolar bonds and miscoordinations), thermodynamic conditions, and opti-
mal bonding. What makes DNFM so peculiar with respect to other disordered
materials is the fact that, in principle, the connectivity among structural units can
result in extended spatial correlations, as those visualized in Fig. 3. The present
work shows how modern atomic-scale models (first-principles molecular dynam-
ics) contribute to a precise understanding of the structure of these materials that, in
turn, become benchmark systems to assess the predictive power of the approaches
employed.
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Fig. 2 Total pair correlation
function GT (r ) of liquid
GeSe2 obtained via FPMD at
T = 1, 050 K (dotted line)
and at T = 1, 373 K (full
line).
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Fig. 3 Snapshot of a subset
of atoms forming the liquid
GeSe2 network. Ge atoms are
dark and Se atoms are grey.
An edge-sharing connections
is visible, characterized by
two adjacent fourfold
Ge-Se-Ge-Se rings

2 Generalities on the Methodology

Molecular dynamics (MD) consists in the solution of the equations of motion for
a collection of particles and can be taken as the ideal tool to describe systems at
atomic scale in two respects. First, it allows a direct access to the mechanisms of
motion. Within this class of phenomena, one can think (in a non-exhaustive list) of
diffusion processes, nucleation and melting processes, and the elementary steps of
a chemical reaction on surfaces. Second, it provides the macroscopic quantities that
correspond to the measurable property accessible to experiments via the equilibrium
time averages of the microscopic ones. In this context, the term “microscopic” indi-
cates a suitable function of the atomic positions and velocities. Realistic modeling of
materials is based on the assumption that the interatomic forces derived to describe
the motion reflect the true nature of chemical bonding and of its variations as a
function of the temperature and/or of external conditions. We have summarized
in this sentence the challenge one has to face to confer MD methods a predictive



Nanostructural Units in Disordered Network-Forming Materials 347

power, being able to complement experiments and even to go beyond them when
experimental findings are lacking or difficult to interpret. In this section devoted
to methodology, we recall in a first step the basic principles of the first-principles
molecular dynamics technique (FPMD). Then, we shall describe specific features of
its application to disordered network-forming materials in the liquid and the glassy
states.

3 First-Principles Molecular Dynamics

3.1 An Overview of the Kohn–Sham DFT Approach

It is instructive to review the theorems that are at the basis of the Density Functional
Theory (DFT) which allows us to find ground-state properties of a system without
dealing directly with the many-electrons state |ψ〉 [24]. We deal with a system of
N electrons moving in a static potential and adopt a conventional normalization in
which 〈ψ |ψ〉 = N .

As a result of the Born–Oppenheimer approximation [25], the Coulomb potential
arising from Nat nuclei is treated as a static external potential Vext(r):

Vext(r) = −
Nat∑

α=1

Zα

|r − Rα| .

We define the remainder of the electronic Hamiltonian

F = Te + Vee

such that H = F + Vext where

Vext =
∑

i

Vext(ri ).

F is the same for all N electron systems, so that the Hamiltonian, and hence the
ground state |ψo〉, is completely determined by N and Vext(r). The ground state |ψo〉
for this Hamiltonian gives rise to a ground-state electronic density no(r):

no(r) = 〈ψo|n̂|ψo〉 =
∫ N∏

i=2

dri |ψo(r, r2, r3, . . . , rN )|2.

Thus, the ground state |ψo〉 and density no(r) are both functionals of the num-
ber of electrons N and of the external potential Vext(r). Density Functional Theory
makes two remarkable statements which are expressed in the two following theo-
rems. The first states that the external potential Vext(r) is uniquely determined by the
corresponding ground-state electronic density, to within an additive constant. In the
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second, given a density n(r), EV [n] ≥ Eo where Eo is now the ground-state energy
for N electrons in the external potential V (r).

The remarkable result of DFT is the existence of the universal functional F[N ],
which is independent of the external potential. This allows to deal with a function
of only three variables (the density) replacing a function of 3N variables (the many-
electron wave function). The complexity of the problem has been much reduced.
The exact form of the universal functional F[N ] is unknown. The failure to find
accurate expressions for F is a result of the complexity of the many-body problem.
For an electron gas the effects of the exchange and correlation (XC) are crucial
for an accurate description of its behavior. The antisymmetry of the wave function
requires that particles with the same spin occupy distinct orthogonal orbitals, and
this results in the particles becoming spatially separated. Moreover, the interactions
cause the motion of the particles to become correlated to further reduce the energy
of the interaction.

The main contribution of Kohn–Sham (KS) was to recast a many-body problem
in the solution of a non-interacting particle problem [26]. In fact, it is possible to
assume that for any non-interacting system of electrons, there exists an auxiliary
system of non-interacting particles such that the exact ground-state density of the
interacting system equals the ground-state density of the auxiliary non-interacting
system ρ0 = ρs . If the ground state of the Hamiltonian of the non-interacting
particles is non-degenerate, then ρs and ρ0, by assumption, possess an unique
representation

ρ0(r) =
occ∑

i

fi |ψi (r)|2, (1)

where the ψi (r ) are the N single-particle orthonormal orbitals obtained from the
Schrödinger equation

HKSψi =
(

−1

2
∇2 + vs

)
ψi = εiψi . (2)

For simplicity the occupation numbers fi will be considered all equal and will
be omitted in the following.

Thus, the total energy functional Ev of the interacting system in the external
potential v can be written as

Ev[ρ0] = Ts[ρ0] +
∫

dr v(r)ρ0(r) + 1

2

∫
dr dr′ ρ0(r)ρ0(r′)

|r − r′| + Exc[ρ0], (3)

where on the right-hand side the four terms are, respectively, the kinetic energy of
the corresponding non-interacting system, the interaction energy with the external
potential, the classical electrostatic energy, and the exchange and correlation term.
The last term is introduced and defined in Eq. (3) andtakes into account all the



Nanostructural Units in Disordered Network-Forming Materials 349

remaining quantum interactions between the electrons. In this case the auxiliary
potential which generates ρ0 is given by

vs(r) = v(r) +
∫

dr′ ρ0(r′)
|r − r′| + δExc

δρ(r)
. (4)

Since vs depends on the density, the KS equations (1), (2), and (4) must be solved
in a self-consistent fashion.

The only term that can be a source of problems is the term Exc that is not known.
An approximation to Exc that has been widely used in the literature is the local
density approximation (LDA). The XC energy density is approximated by the corre-
sponding expression of the homogeneous electron gas (exc(n)) with the replacement
of the constant density n by the local density ρ(r) of the actual inhomogeneous
system

Exc =
∫

dr ρ(r)exc[ρ(r)].

Application of the local density scheme gives better results when applied to
a system with a slowly varying density. Otherwise, it is better to resort to more
sophisticated approximations, like the generalized gradient approximation (GGA),
in which Exc depends not only on the electron density but also on the magnitude of
the gradient of this density

Exc =
∫

dr fxc(ρ(r), |∇ρ(r)|)

with fxc depending on the particular GGA used. In the section devoted to methodol-
ogy, we provide more detail on the implications of the choice of the XC functional
for the specific cases considered in this chapter. In particular, we shall consider
two XC functionals, the one due to Perdew and Wang (PW) and the other due to
Becke (B) for the exchange energy and Lee, Yang, and Parr (LYP) for the correlation
energy [27–29].

Thus, since the set of Eqs. (1), (2), and (4) describe the single-particle Schrödinger
equations for the Kohn–Sham eigenstates ψi (r), these functions can be interpreted
as equations for an electron moving in an effective potential due to atom cores
and other electrons. The solution of these equations give the ground-state electron
density and the total energy of the system. It is important to stress that the ψi (r)
functions have no physical meaning and they can be used only to build the elec-
tron density. However, the eigenvalues associated with the ψi (r) functions repro-
duce quite well the experimental electron energy spectra, apart from a systematic
underestimation of the bandgap in semiconductors, which can be attributed to the
XC term. Therefore, in practice the ψi (r) functions are often considered as the true
electron wave functions.
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To solve the KS equation numerically, a basis set must be chosen to expand the
electron wave functions. One of the basis set most used in literature is the plane
wave (PlW) set that represents the natural choice when the periodic boundary con-
ditions (PBC) are used. In fact, in this case, the effective potential is periodic in
three dimensions and the KS eigenstates become Bloch functions.

Furthermore, other advantages of the PlW expansion are the following:

• it permits the use of FFT techniques which are computationally very efficient;
• since PlWs do not depend on atomic positions, the forces acting on the atoms can

be easily computed via the application of the Hellman–Feynman theorem [30];
• the convergence of the PlW calculations can be controlled by just the number of

Fourier components included in the expansion of the ψi .

Some disadvantages of the PlW expansion rely on the large number M of basis
functions needed to represent the electronic orbitals, compared for example to basis
set of gaussian or atomic-like orbitals.

The use of PlW expansion calls for the use of pseudopotentials to describe the
atomic core, since the number of PlWs needed to describe localized core states is
too large and cannot be afforded from a computational point of view.

As a consequence of the periodicity introduced by PBC, the single-particle
orbitals satisfy the Bloch theorem and can be expanded in PlWs:

ψk
i = eik·r∑

g

ck
i (g)eig·r, (5)

where g is the reciprocal lattice vector of the MD cell and the wavevector k lies in the
Brillouin Zone (BZ) of the reciprocal lattice. It will be shown in the section devoted
to the Car-Parrinello method that the Fourier components ck

i are time-dependent
degrees of freedom during the molecular dynamics calculations. The basis set
specified in Eq. (5) is truncated including only those PlWs with a kinetic energy
Ek = 1

2 (k + g)2 less than a given cutoff energy Ecut. The value of Ecut depends on
the specific system and in particular upon the choice of the pseudopotential for the
description of the core–valence interaction. For a given pseudopotential the choice
of Ecut determines the accuracy of the calculation.

The computation of the electronic density (ρe(r)) involves an integral over
the BZ:

ρe(r) =
∑

k

ωk

∑

i

|ψk
i (r)|2,

where ωk is the k-point weight. The summation over k can be reduced taking into
account only the Γ point (k=(0,0,0)) because, in general, disordered systems do
not preserve the same symmetry during all the molecular dynamics simulation.
Therefore, the computation of the finite-temperature properties of disordered sys-
tems is most appropriately performed with large cells and the use of Γ point for the
BZ sampling, reducing in this way the overall computational effort.
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Another advantage in the use of the Γ point is that it is possible to choose the
single-particle orbitals ψi (r) to be real, since the phase factor of the wave function
is arbitrary. Thus, for each reciprocal lattice vector g, the Fourier components ci (g)
of the orbitals satisfy the symmetry relation ci (−g) = c∗

i (g). Taking advantage of
this property it is possible to reduce the independent Fourier components by a factor
2, reducing then also the computational workload.

The numerical effort needed to solve the KS equations increases with the num-
ber of electrons involved, and moreover since the core electronic states are very
localized they need a very high number of PlWs in the Fourier expansion. These
problems can be overcome observing that in most molecular and solid-state sys-
tems, the electronic core states are only slightly involved in the interactions among
the atoms and that they can be considered unchanged with respect to the free atom.
Thus, it is possible to separate core electrons from valence electrons and replac-
ing their atomic Coulomb potential, designed in such a way that the effect (essen-
tially the orthogonality condition) of core states on the valence states is effectively
reproduced.

The construction of the ionic pseudopotential starts with the resolution of the
radial KS equation for the single atom. This gives the radial part Rnl(r ) of the
atomic orbital with principle quantum number n, angular quantum number l. Then,
a pseudo wave function R P P

l (r ) is constructed from the (valence) wave function
Rnl(r ) satisfying the following constraints:

• R P P
l (r) and Rnl(r) are equal outside a core radius rc;

• the amount of charge inside the core radius is equal for the two wave functions;
• the eigenvalues of R P P

l (r) and Rnl(r) are equal;
• R P P

l (r) contains no nodes.

The second constraint is the norm-conserving condition: it ensures that the two wave
functions outside rc are identical not only in shape but also in magnitude, i.e., the
pseudo wave function produces the correct amount of charge outside the core region.

The formed pseudopotential vl(r) depends on the angular quantum number and
is a nonlocal operator given by

vps(r) =
∑

lm

vlm(r) P̂l ,

where P̂l is a projector operator onto the lth angular momentum.
A further requirement for pseudopotential is to be as smooth as possible, so that

it would require the lowest possible Ecut.

3.2 FPMD: Basic Concepts

In this section we will introduce the key concepts to perform FPMD simulations
using the electronic structure calculations discussed in the previous sections. In fact,
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once the electronic ground state for a fixed ion has been obtained, the quantum
mechanical forces on ions can be calculated by means of the Hellman–Feynman
theorem. It states that in the electronic ground states the forces on the ions are given
by minus the partial derivative of the total energy with respect to the ion coordinates.
In principle a first-principle molecular dynamics can be performed following four
steps:

• calculate Hellman–Feynman forces;
• move ions according to Newton’s law;
• solve Kohn–Sham equations;
• repeat until satisfied.

An alternative approach was proposed by Car and Parrinello (CP) [31]. The key
point of the CP technique is the definition of a fictitious dynamical system associ-
ated with the physical one. The fictitious system is devised in such a way that the
trajectory generated by its dynamics reproduce very closely those of the physical
system. The physical system has a Lagrangian given by the sum of the ionic kinetic
energy and the ionic potential energy

Lcl = 1

2

∑

I

MI Ṙ2
I − V[{RI }], (6)

where MI are the physical masses of the ions. The generalized classical Lagrangian
of the fictitious system is

L =
occ∑

i

∫
dr μi |ψ̇i (r)|2+1

2

∑

I

MI Ṙ2
I −E[{ψi }, RI ]+

∑

i j

Λi j

(∫
dr ψ∗

i ψ j − δi j

)
,

where μi are arbitrary parameters of units (mass) × (length)2 which play the role
of generalized masses for the electronic degrees of freedom. For simplicity we
will consider a unique μ for the ψi , independent from the electronic state, even
though this is not necessary. The first and second terms in the Lagrangian are the
electronic Ke and ionic KI kinetic energies, respectively. E is the potential energy
of the coupling among electronic and ionic degrees of freedom. The Lagrangian
multipliers Λi j are used to impose the orthogonality condition on the ψi (they are
simply holonomic constraints).

The Euler equations associated with the Lagrangian of the fictitious system are

μψ̈i = − δE
δψ∗

i
+∑ j Λi jψ j ,

MI R̈I = − ∂ E
∂RI

.
(7)

On the contrary the Euler equations from the Lagrangian of the physical system
(Eq. (6)) are
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MI R̈I = −∂V[{RI }]
∂RI

. (8)

In general the ionic trajectory generated by Eqs. (8) and (7) do not coincide,
unless E[{ψi }, RI ] is at the instantaneous minimum. If the parameter μ and the
initial conditions {ψi }0 and {ψ̇i }0 are properly chosen, it is possible to have the two
sets of classical degrees of freedom, ions and electrons, weakly coupled. In this way
the transfer of energy between them is small enough to allow the electrons to follow
adiabatically the ionic motion, remaining close to the Born–Oppenheimer surface.
This kind of dynamics, that is usually called classical adiabatic dynamics, reproduce
in a computationally effective way what happens in real life: the electrons follow in
adiabatic way the movement of the ions.

The CP method can reproduce the properties of the quantum eigenvalue spec-
trum of the electrons. In particular, it is possible to show that for small deviations
from the ground state, the dynamics of the KS orbitals can be well described as a
superposition of oscillations whose frequency is given by

ωi j =
[

2(ε j − εi )

μ

]1/2

,

where ε j (εi ) is the eigenvalue of an empty (occupied) state. The lowest frequency
that in a regime of small deviations from the ground state can appear in the system
is ωmin = (2Eg/μ)1/2, where Eg is the energy gap. If the energy gap is different
from zero and μ is sufficiently small, it is possible to have characteristic electronic
frequencies much higher than those characteristic of the ionic motion. This assures
that the fast electronic degrees of freedom can follow adiabatically the ionic motion.
An important point to underscore is that, if the conditions for the adiabatic motion
of the electrons are satisfied, the instantaneous value of the forces does not coincide
with the Hellman–Feynman forces but their average value does to a very high degree
of accuracy.

4 Practical Implementation of FPMD to Disordered
Network-Forming Materials

The practical implementation of the ideas and concepts inherent in the FPMD to
the case of disordered systems is far from being a straightforward application of
a mere simulation recipe. Depending on the extent of residual structural order, the
description of structural correlations may require system sizes capable of accounting
for range of distances beyond nearest neighbors. Also, the length of the temporal
trajectories should allow to capture relevant diffusion mechanisms and becomes
highly critical when systems configurationally arrested are created by rapid quench.
Finally, different DFT schemes differing by the form taken by the XC functionals
might lead to well-distinct structural descriptions, suggesting that the comparison
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between theory and experiments can provide clues on the reliability of these various
DFT schemes. In what follows we shall list and detail a number of critical issues
to be dealt with to ensure realistic modeling of structural properties in DNFM. In
particular, we shall focus on Gex Se1−x liquid and glasses by referring mostly to the
prototypical case of GeSe2.

4.1 Size of the Periodic System

Hereafter, we refer to FPMD simulations performed on Gex Se1−x liquid and glasses
for which not more than N = 144 atoms have been employed, N = 120 being
the standard value in most cases. The sizes of the periodically repeated cubic cells
[15.7 Å, for liquid GeSe2 (l-GeSe2 hereafter)] are taken to match experimental den-
sities and are sufficiently large to cover the region of wavevectors in which the
FSDP occurs. In the case of l-GeSe2, the smallest wavevector compatible with the
supercell, kmin=0.4 Å−1, is smaller than the FSDP wavevector kFSDP=1.0 Å−1. In
addition, the region of wavevectors in which the FSDP appears is described by as
much as eight discrete wavevectors compatible with the periodicity of our supercell.
Regardless of these considerations, it appears desirable to carry out calculations on
larger system sizes, since the existence of spurious boundary effects can only be
avoided by a careful study of the dependence of FPMD results on the total number
of atoms. The computational cost of FPMD calculations on systems encompassing
several hundredths of atoms (say N = 400–500) was prohibitive when the first
FPMD simulations on disordered network-forming materials appeared in the early
nineties. Increase of computational power and the advent of massively parallel com-
puters have made these calculations within the reach of realistic projects and are
currently in progress. To provide an example, one can compare the cost of 1 ps of
FPMD for N = 120 and N = 480 on the IBM SP6 parallel computer exploited by
the two French national computer centers IDRIS and CINES. In both calculations,
a time step of δt = 0.25 fs was adopted. In the first case (N = 120), 19 h/processor
were necessary, while in the second (N = 480) the above hours/processor ratio
rose to 2,100, leading to a computational effort larger by a factor close to 100.
To understand this increase one can consider that the FPMD computational effort
follows a scaling law based on the Ng N 2

s product, Ng being the number of Fourier
components for each orbital (i.e., plane waves) and N 2

s the number of orbitals (i.e.,
Kohn–Sham eigenstates). By taking into account the linear relationship between
Ng and the volume, together with the number of the eigenstates (four times more
numerous when N = 480), the computational effort is expected to increase by a
factor 64 when going from N = 120 to N = 480. However, for a parallel computer,
these estimates hold only in the case of an ideal communication among processors
with no residual time besides that devoted to the calculations.

By coming back to the rationale used to validate our first choice of the system
size (N = 120), we mention the indications of an analysis of the range of real-space
correlations which are responsible for the appearance of the FSDP in the total and in
the partial structure factors [6]. For a given partial pair correlation function gαβ(r ),
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this range can be determined by truncating gαβ(r ) at decreasing distances rc, moni-
toring the behavior of the corresponding Fourier-transformed structure factor SFT

αβ (k)
and comparing SFT

αβ (k) to the Sαβ(k) directly calculated in reciprocal space. In [6], we

showed that the FSDP is present in SFT
αβ (k) when rc extends up to ∼ √

2L/2, L being
the size of our cubic simulations cells. For these values of rc, reliable statistics can
be collected for distances between independent atoms in the supercell [32]. These
conditions are largely met in all calculations presented in recent years on Gex Se1−x

and closely related systems.

4.2 Temporal Trajectories and the Production
of an Amorphous System

Statistical mechanics require accurate sampling of extended temporal trajectories
to ensure reliable evaluation of macroscopic properties. In the case of liquid sys-
tems, this is readily obtained, provided the average spatial length of the trajectories
spanned by each individual atom is larger than a few interatomic distances. As a
customary practice, it is worthwhile to produce Nst-independent liquid configura-
tions by selecting uncorrelated starting points, such us disordered configurations
created ad hoc. Access to statistical errors can be obtained as follows. First, one
takes separate averages over Nst well-equilibrated portions lasting at least 10 ps at
the desired temperature. Then, from this set of Nst partial averages, one extracts
global averages (mean values). For each subtrajectory, a specific standard deviation
can be obtained. In order to reflect the variations found among the whole population
of the given Nst partial averages, we express the statistical errors of the mean values
σmean as σ /

√
Nst − 1, where σ is half the largest difference among the Nst partial

averages.
The production of glassy phases by quench from the liquid state and its level

of reliability when comparing with experimental samples is the subject of a long-
standing controversy. Widespread criticism as regards to a procedure that consists
in producing configurations kinetically arrested by a reduction of temperature have
stimulated two basic directions of debate. First, the very rapid interval of cooling is
suspected to make the structure of the system dependent on the procedure followed
to reduce the temperature, the “true” glassy structure being the one that corresponds
to the comparatively much slower experimental quench rates. Second, the supposed
similarities shared between the structure of the parent liquid and the amorphous
phase are claimed to render any structural analysis performed on this latter devoid
of real significance. A few considerations are in order to fully capture the advantages
and the drawbacks encountered when producing a glassy phases via computer sim-
ulations. The rapid quench strategy has to be understood as a compromise between
the search of an accurate description of the chemical bonding (intrinsic to FPMD)
and the penalizing temporal span of FPMD trajectories. We found that the reliability
of this approach is larger in systems characterized by a high degree of chemical
order, as shown by a comparison with measured structural properties such as the
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total and partial pair correlation functions and the total and partial structure factors
[6, 33–38]. For glassy systems known to exhibit an extent of chemical order different
than in the liquid phase, it is crucial to rely on the relaxation effects accessible on
the available time scale. In the case of amorphous GeSe2, the impact of relaxation
on the structural properties has been investigated in detail [36]. First, we selected
several uncorrelated liquid configurations. Then, we annealed the system at the tar-
get temperature for intervals not shorter than � 10 ps. Significant changes in the
structure were observed, proving that it is possible to minimize memory effects.
In the case of GeSe2, the main effect of a quench from the liquid is to restore
chemical order by reducing the number of miscoordinations and homopolar bonds
[36]. Taken altogether, these ideas suggest that different quench rates may alter the
relative proportions of the various structural units in the glass. However, at least in
the case of systems not too chemically disordered in the liquid state, the identity and
the number of these units is not expected to be drastically different when moving
from the liquid to the glass.

4.3 The Role of the Exchange–Correlation Functional

The most delicate issue to be addressed when planifying FPMD calculations on
disordered network-forming materials is the choice of the exchange–correlation
functional to be used within DFT. In this section, we provide an historical overview
of the reasons underlying this choice. Even though this section is not intended to
present results in their detail, we found convenient to make explicit reference to
some of them in this context. A suitable electronic structure-based scheme has to
account for the fact that some of these networks are composed by atoms that are
prone to charge transfer processes when bound to interact. For instance, this is the
case of Gex Se1−x systems, meaning that A (Ge) atoms have a strong tendency to
transfer electrons to the X(Se) atoms, the amount and the spatial localization of
this transfer depending on the relative concentration considered. By leaving aside
for a while the complexity of an electronic structure-based model, let us assume
one prefers to select an alternative (less expensive) option, focusing on interactions
among localized charges of opposite sign. This choice has the obvious advantage
of making more affordable large-scale calculation and is currently being pursued
by some groups, in an attempt to improve upon early interatomic potential models
[19–21, 39, 40]. When the first classical molecular dynamics models appeared for
these systems, collections of tetrahedra in which a highly “cationic” atom was con-
nected to four highly “anionic” atoms were considered, in principle, ideally suited
to describe the structural network [19–21].

However, an analysis of the early literature for DNFM liquid and glasses,
reveals that the main hypotheses legitimating a predominant ionic interaction are
bound to fail when the difference in electronegativity among the systems compo-
nents is not too large. The key observation unraveling the weaknesses of effec-
tive (otherwise called empirical, or semiquantitative) interatomic potential is the
presence of homopolar bonds, implying that atoms of the same kind are nearest
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neighbors. This feature cannot be reproduced by a potential in which formal charges
are assigned to each atomic site, since the energetic cost required to surmount the
repulsive interaction is prohibitive, unless the temperature is increased up to unre-
alistic values. Homopolar bonds are found in most disordered network materials, at
various percentages. An example is given in Fig. 4, showing a snapshot of the struc-
ture of l-GeSe2 obtained via the FPMD approach, found to be much more consistent
with experimental evidence than the interatomic potentials.

Having established that the account of the electronic structure is of crucial impor-
tance for most DNFM, we stress that in its DFT–LDA version, FPMD was found
unable to correctly describe the structure of a prototypical DNFM, l-GeSe2 [34].
In Fig. 5, a comparison is given among the experimental total neutron structure
factor and its theoretical counterparts calculated by using LDA and the PW
generalized gradient approximation, obtained at the same temperature. It appears

Fig. 4 Snapshot of a configuration of liquid GeSe2 at T = 1, 050 K, as obtained by using FPMD
and the PW exchange–correlation functional. Dark sticks depart from Ge atoms and grey sticks
depart from Se atoms. Several Ge–Ge and Se–Se homopolar bonds can be observed
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Fig. 5 Total neutron structure factor of liquid GeSe2 calculated at T = 1, 050 K by using three
different exchange–correlation functionals, namely LDA (dotted line), PW (full line), and BLYP
(dash dotted line). Open squares are the experimental data from [5]

that LDA is unable to describe intermediate range correlation (FSDP absent in the
LDA results), while the situation is drastically improved by introducing the GGA
approximation. Quite recently, we have analyzed the impact of the GGA functionals
on the structure of l-GeSe2 by considering a third GGA functional, the one due to
Lee, Yang, and Parr for the correlation energy. The reasons underlying this study
can be expressed as follows.

The adoption of the PW scheme due to Perdew and Wang as a generalized gradi-
ent approximation [33, 34, 6] allows to go beyond the local density approximation
(LDA) that uses an analytic representation of the correlation energy εc(ρ) for a
uniform electron gas. The PW representation introduces variations of εc(ρ) as a
function of ρ and the spin polarization [27]. Turning our attention to the FPMD
approach and to the case of l-GeSe2, it is worth recalling the indications collected
through the use of the local density approximation (LDA) within DFT. The absence
of the FSDP (first sharp diffraction peak) in the total neutron structure factor could
be correlated to the lack of a predominant structural unit (the GeSe4 tetrahedron),
with comparable percentages of Ge atoms twofold, threefold, fourfold, and fivefold
coordinated [34]. We shall come back to this point in the section devoted to the
results, by showing that the predominant presence of the tetrahedra is an unambigu-
ous fingerprint of the appearance of the FSDP and the concomitant establishment of
intermediate range order. The improvements brought about by the GGA in the PW
form was due to the ionic character of bonding, as shown in [34] through an analysis
of the contour plots for the valence charge densities. The larger ionicity of bonding
characteristic of the PW approach manifests itself through a larger depletion of the
valence charge at the Ge sites and a larger accumulation around the Se atoms, the
covalency being very close in the LDA and in the PW scheme [34].

This success was partially undermined by the detailed comparison of the partial
correlations and the observation that residual differences persisted between theory
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and experiment. These shortcomings were ascribed to an inadequate description of
Ge−Ge correlations, as shown by the shape of the calculated Ge−Ge correlation
function, much less structured than its experimental counterpart and by the long
(15% more than the experimental value) first-neighbors Ge−Ge distances. Longer
interatomic Ge−Ge distances and less structured Ge−Ge pair correlation functions
were correlated to an overestimate of the metallic character in l-GeSe2, the calcu-
lated Ge−Ge distances being close to those of Ge liquid.

In an attempt to further improve upon LDA, the generalized gradient approxi-
mation after Becke (B) for the exchange energy and Lee, Yang, and Parr (LYP) for
the correlation energy [28, 29] was selected for the following reasons. In this GGA
scheme, no reference to the uniform electron gas is made in the derivation of the
correlation energy, that is expressed according to a formula due to Colle and Salvetti,
recast in terms of the electron density and of a suitable Hartree–Fock density matrix
[41, 29]. This scheme enhances the localized behavior of the electron density at the
expenses of the electronic delocalization effects that favor the metallic character.
Which systems and bonding situations are likely to be better described by BLYP
than by PW ..? By focusing on multicomponent systems AnB(1−n) of concentrations
n, the BLYP scheme has to be preferred to treat bonding situations characterized by
a moderate difference of electronegativity (termed Δel hereafter) among the system
components. This is especially true for compositions at which optimal coordina-
tion between the species A and B occurs (for instance GeSe2 within the GenSe(1−n)

family). In the case of a large Δel , the ionic contribution to bonding is sufficiently
large to ensure effective charge transfer in a way essentially independent on the
details of the exchange–correlation functional. This is the case of disordered SiO2

(Δel = 1.54), well described as a corner-sharing network within LDA [42, 43]. For
lower values of Δel , the amount of the valence charge density in the bond directions
becomes non-negligible and the relative weight of the ionic and covalent character is
less straightforward to quantify. The case of l-GeSe2 is a prototype of this situation,
being characterized by Δel = 0.54. The choice of BLYP to improve upon PW
(and LDA) is the practical realization of a strategy aimed at minimizing the excess
electronic delocalization effects preventing a correct description of competing ionic
and covalent contributions.

5 Structural Properties and the Intermediate Range Order

Comparing the structural properties of different models of a prototypical DNFM
can help to elucidate the origin of the intermediate range order, its occurrence being
associated with the presence of the FSDP in the total neutron structure factor. In
what follows we apply this strategy to l-GeSe2 for which three DFT descriptions
are available, differing in the form taken by the exchange–correlations functionals
(LDA, PW, and BLYP). As shown in Fig. 5, LDA is unable to provide a significant
FSDP in the total neutron structure factor, clearly distinguishable with both PW and
BLYP. As a by-product, considering three XC functional will also allow to deter-
mine whether the structure of l-GeSe2 is sensitive to the quality of the functional
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and in which directions some improvements can be gained. We point out that DFT
results on l-GeSe2 have also been obtained by employing a framework based on a
nonself-consistent electronic structure scheme, the local density approximation of
DFT, and a minimal basis set [44, 45]. A comparison of the structural properties
obtained within these two approaches is provided in a recent paper for the case of
amorphous GeSe2 [46].

Partial pair correlation functions gαβ(r ) and their experimental counterparts [5]
are shown in Fig. 6. Peak positions and number of neighbors within given integration
ranges are displayed in Table 1 for the three XC models. From the experimental
point of view, a first maximum indicative of homopolar bonds can be seen in
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Fig. 6 On the left: partial pair correlation functions obtained by FPMD calculations by using the
LDA (dotted line) and the PW (thick line) exchange–correlation functionals. The thin line is the
experimental results [5]. On the right: partial pair correlation functions obtained by FPMD calcu-
lations by using the BLYP (dotted line) and the PW (thick line) exchange–correlation functionals.
The thin line is the experimental results [5]
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Table 1 First (FPP) and second (SPP) peak positions in experimental [5, 7] and theoretical gαβ (r).
BLYP, PW, and LDA denote results obtained with different exchange–correlation functionals.
The integration ranges corresponding to the coordination numbers nαβ and n′

αβ are 0−2.6 Å,

2.6−4.2 Å for gGeGe(r ), 0−3.1 Å, 3.1−4.5 Å for gGeSe(r ), and 0−2.7 Å, 2.7−4.8 Å for gSeSe(r )

gαβ (r ) FPP (Å) nαβ SPP (Å) n′
αβ

gBLYP
GeGe (r ) 2.45±0.10 0.22±0.01 3.67±0.10 2.70±0.06

gPW
GeGe(r ) 2.70±0.10 0.04±0.01 3.74±0.05 2.74±0.06

gLDA
GeGe(r ) 2.7±0.1 0.08±0.01 3.65±0.10 2.89±0.06

gexp
GeGe(r ) 2.33±0.03 0.25±0.10 3.59±0.02 2.9±0.3

gBLYP
GeSe (r ) 2.36±0.10 3.55±0.01 5.67±0.02 3.85±0.06

gPW
GeSe(r ) 2.41±0.10 3.76±0.01 5.60±0.01 3.72±0.03

gLDA
GeSe(r ) 2.45±0.10 3.68±0.01 5.70±0.02 4.32±0.06

gexp
GeSe(r ) 2.42±0.02 3.5±0.2 4.15±0.10 4.0±0.3

gBLYP
SeSe (r ) 2.38±0.02 0.33±0.01 3.83±0.02 8.9±0.06

gPW
SeSe(r ) 2.34±0.02 0.37±0.01 3.84±0.02 9.28±0.04

gLDA
SeSe (r ) 2.36±0.07 0.56±0.02 3.82±0.05 8.9±0.06

gexp
SeSe(r ) 2.30±0.02 0.23±0.05 3.75±0.02 9.6±0.3

gexp
GeGe(r ), followed by a main peak and a deep minimum, showing that the Ge sub-

network is organized in distinct shells of neighbors. This trend is not accurately
reproduced either by gLDA

GeGe(r ) or by gPW
GeGe(r ), which are both characterized by the

absence of a clear first maximum, a larger distance for homopolar bonds, a broader
main peak, and a much less pronounced first minimum. All these features are indica-
tive of a less structured shape for gPW

GeGe(r ) and gLDA
GeGe(r ) when compared to gexp

GeGe(r ).
Among the three-pair correlation functions, gGeGe(r ) is the one most affected by the
choice of the exchange–correlation functional. The BLYP scheme improves upon
the PW one by yielding a clear first maximum, due to homopolar Ge−Ge bonds,
and a very pronounced first minimum, closely reproducing the trends observed in
gexp

GeGe(r ). In gBLYP
GeGe (r ) the position of the first peak approaches the experimental value

(r = 2.45 Å, BLYP; r = 2.70 Å, PW, r = 2.70 Å, LDA; r = 2.33 Å, [7]). The
shape of gBLYP

GeGe (r ) reproduces the shoulder in the main peak occurring at r∼3.1Å,
indicative of edge-sharing (ES) connections among tetrahedra [5]. Equally favor-
able is the BLYP prediction of the number of Ge in the first-neighbor shell (0.22,
see Table 1, to be compared with 0.25 [7]). This number is clearly underestimated
within LDA and PW (0.08 and 0.04, respectively).

The Ge−Se pair correlation function gexp
GeSe(r ) is characterized by a prominent

main peak and a deep minimum. This behavior is well reproduced in gPW
GeSe(r ),

though the maximum and the minimum are found to be less pronounced. At higher
distances, gPW

GeSe(r ) shows less structure than the experimental curve, with a flat
second maximum at r = 5.5 Å. In gBLYP

GeSe (r ), the position of the main peak is slightly
displaced toward shorter distance, by 0.05 Å. The BLYP scheme is able to reproduce
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accurately the height of the first maximum and the abrupt decay from the first, sharp
maximum down to vanishing values. The first shell of coordination extracted from
gBLYP

GeSe (r ) has a number of neighbors (3.55) in very good agreement with experiments
(3.50, see Table 1). Little improvement is found for larger distances, both gBLY P

GeSe (r )
and gPW

GeSe(r ) lacking of the second, small maximum visible in gexp
GeSe(r ).

In the case of Se−Se correlations, gPW
SeSe(r ) follows closely the experimental

gexp
SeSe(r ) for r > 3 Å. Although the first peak is sharper than in experiment, gPW

SeSe(r )
yields an accurate value for the first-neighbor coordination number nSeSe. This holds
true also for gBLYP

SeSe (r ). Se−Se correlations are very similar in the PW and BLYP
schemes, as shown by the close numbers for the first coordination shell neighbors
(see Table 1). Homopolar Se−Se bonds are found at a distance only 2% larger than
in the PW case.

Considering the results obtained in the LDA, we observe the following. On one
hand, the overall shape of the three LDA partial correlation functions is remarkably
similar to the PW ones. On the other hand, the LDA curves show a higher number
of homopolar neighbors and are generally less structured than in the PW scheme.

Focusing on the results in real space obtained within the PW scheme, one can
conclude that they are intrinsically better than those obtained via the LDA. However,
PW persists in giving a broader distribution of Ge Ge bond lengths, which on
average are longer by as much as 15% with respect to experimental values (see
Table 1). Longer interatomic Ge−−Ge distances and less structured Ge Ge pair
correlation functions were recently also obtained for liquid GeSe within the same
first-principles framework used here [47]. We note that such longer Ge–Ge bond
lengths are characteristic of the metallic liquid Ge. For this system, first-principles
calculations correctly reproduce the experimental bond lengths (theory:[48, 49]
2.63−2.75 Å; expt.:[50, 51] 2.66−2.75 Å). This suggests that the PW still over-
estimates the metallic character in l-GeSe2, thereby legitimating the use of a XC
functional better suited to localize the electron charge density on the atomic sites.
This is exactly the case of the BLYP recipe. We obtain partial (nGe, nSe) and aver-
age (n) coordination numbers from the first-neighbor coordination numbers, nGeGe,
nGeSe, and nSeSe, given in Table 2. The resulting theoretical values are compared to
experimental data in Table 2. As pointed out in [6], a compensation occurred in the
PW case between the underestimated value of nGeGe and the overestimated value of
nGeSe, leading to a good agreement for nGe. In the BLYP case, the small difference

Table 2 Experimental and theoretical values for the partial coordination numbers nGe and nSe and
the average coordination number n of liquid GeSe2 at T = 1, 050 K. BLYP, PW, and LDA denote
results obtained with different exchange–correlation functionals. The coordination numbers nGe

and nSe are given by nGeGe + nGeSe and nSeSe + nSeGe, respectively (see the values reported in
Table 1 for nGeGe, nGeSe and nSeSe, where nGeSe = 2nSeGe). The average coordination number n is
equal to cGe(nGeGe + nGeSe) + cSe (nSeSe + nSeGe).

nGe nSe n

BLYP 3.77±0.02 2.11±0.02 2.66±0.02
PW 3.80±0.02 2.25±0.02 2.77±0.02
LDA 3.76±0.02 2.40±0.02 2.85±0.02
[7] 3.75±0.3 1.98±0.15 2.57±0.20
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between nGe(BLYP) and its experimental counterpart is the result of close values
for each single contributions, i.e., nGeGe, nGeSe, and nSeSe. As a result, the calculated
and experimental average coordination numbers n differ by only 3.5%. As expected,
LDA features the worst agreement with experiments.

Overall, BLYP calculations improve the short-range structure of l-GeSe2, featur-
ing more structured gexp

GeGe(r ) and gexp
GeSe(r ). In particular, the BLYP approach pro-

vides much shorter Ge−Ge distances and a well-defined first shell of Ge neighbors,
bringing pair correlation functions in better agreement with experiments.

In order to link the appearance of the FSDP to a real-space feature, one can find
a specific structural motif (or a combination of them) that are predominant when the
FSDP is observed. In the present case, two set of results (PW and BLYP) do feature
the FSDP that is largely understimated within LDA. A comparative analysis of the
three corresponding structures is expected to provide clues into the atomic-scale
origins of intermediate range order when the chemical nature of the components is
not taken into account (i.e., at the level of the total structure factor). To this end we
resort to the quantity nα(l), defined as the average number of atoms of species α

l–fold coordinated (see Table 3), where α are Ge or Se atoms.
We use a cutoff distance of 3 Å which corresponds to the first minimum in the

Ge−Se pair correlation function and well describes the first shell of neighbors also
for Ge−Ge and Se−Se correlations. The results for l = 4 relative to Ge atoms
are those that can be most easily interpreted in terms of deviations from a perfect
tetrahedral network. The lowest percentage of Ge atoms fourfold coordinated (about
55%) is found in LDA, this number increasing beyond 60% in the case of PW and
BLYP. The same holds for Se atoms with percentages of Se atoms twofold coordi-

Table 3 Average number nα(l) (expressed as a percentage) of Ge and Se atoms l–fold coordinated
at a distance of 3.0 Å. For each value of nα(l), we give the identity and the number of the Ge and
Se neighbors. For instance, GeSe3 with l = 4 means a fourfold coordinated Ge with one Ge and
three Se nearest neighbors. Values smaller than 1 are reported only for sake of comparison with
corresponding values equal or larger than 1. BLYP, PW, and LDA denote results obtained with
different exchange–correlation functionals

Ge l = 2 BLYP PW LDA l = 3 BLYP PW LDA
Se2 4.0 5.2 5.4 GeSe2 0.8 2.6 3.1

Se3 13.5 19.8 23.6

l = 4 BLYP PW LDA l = 5 BLYP PW LDA
GeSe3 23.3 7.0 13.9 Ge2Se3 2.4 0.4 0.8
Se4 41.8 53.8 42.1 GeSe4 11.7 5.9 5.0

Se5 0.6 (4.6) 4.2

Se l = 1 BLYP PW LDA l = 2 BLYP PW LDA
Ge 0.9 1.7 1.3 Se2 3.6 2.8 4.2

SeGe 20.7 21.9 22.9
Ge2 59.2 45.6 27.6

l = 3 BLYP PW LDA l = 4 BLYP PW LDA
Se2Ge 2.4 3.2 8.0 SeGe3 0.3 1.0 1.8
SeGe2 5.8 8.6 13.2
Ge3 6.4 13.1 14.0
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nated that are larger than 60% only in the PW and BLYP cases. Deviations form a
perfect tetrahedral order correspond to the presence on Table 3 of a large variety of
units. We observe that the BLYP scheme is characterized by a higher proportion of
Ge GeSe3 connections (as much as 23%), contributing to a percentage of Ge four-
fold coordinated atoms moderately larger than in the PW case (66% against 61%).
The increase of Ge−Ge homopolar bonds and Ge GeSe3 connections takes place
at the expenses of the undefective GeSe4 tetrahedra, lowering from 53.8 (PW) to
41.8% (BLYP). The distribution of miscoordinated Ge atoms is different in the three
situations. LDA favors chemical disorder with a large number of Ge atoms and Se
threefold coordinated. This is indicative of a network in which the tetrahedra coexist
with other geometrical units, preventing intermediate range correlations from estab-
lishing. PW and BLYP favor threefold (l = 3) and fivefold (l = 5) connections,
respectively. In particular, in Ge GeSe4 connections a homopolar Ge−Ge bond is
found to coexist with an adjacent tetrahedral arrangement. Coordination of Se atoms
reflects the increase of chemical order occurring within the BLYP scheme. The
number of twofold coordinated Se atoms becomes more than 10% larger, mostly
due to the predominant Se Ge2 configuration. A corresponding decrease in the
number of miscoordinations (in particular Se SeGe2), lowering from 13 to 6.4%,
is noticeable in Table 3.

Overall, the three models stand for three distinct network configurations. Within
LDA, the Ge and Se atoms cannot organize themselves on a full extent in a tetrahe-
dral network since the ionic contribution to bonding is insufficient. This leads to a
multitude of structural units and to a distribution of coordinations, the coordination
four (two) for Ge (Se) being barely the most likely. Some of these shortcomings
are partially corrected within PW, for which the tetrahedral coordination becomes
predominant. As a result, the intermediate range order can settle due to a restored
regular connectivity among tetrahedra. BLYP corresponds to a further improvement
since it allows to achieve the best compromise between the existence of regular tetra-
hedra and the presence of Ge−Ge homopolar bonds. This results from the higher
charge localization properties of this description, favoring not only ionicity but also
the formation of covalent bonds among atoms of the same kind. In summary, inter-
mediate range order appears to be related to the existence of a predominant structural
units accounting for the majority of the atomic coordinations.

6 Chemical Sensitivity to Intermediate Range Order

As a further step toward precise understanding of the origins of the intermediate
range order, we can consider the case of the presence of the FSDP in a partial struc-
ture factor [52]. This means that the order extending beyond the nearest neighbor
can be associated to an atomic component or, alternatively, to a specific variable
resulting from a linear combination of the atomic components. In what follows
we shall focus on the case of the Bhatia–Thornton concentration–concentration
partial structure factor SCC(k), a quantity representative of chemical ordering. For
a binary system made of A and X atoms in concentrations cA and cX , respectively,
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the Bhatia–Thornton concentration–concentration partial structure factor SCC(k) is
defined as

SCC(k) = cAcX + c2
Ac2

X { [SAA(k) − SAX (k)]

+[SX X (k) − SAX (k)]}, (9)

where SAA(k), SAX (k), and SX X (k) are the Faber–Ziman partial structure factors.
Fluctuations of concentration are reflected by the presence of positive or negative
peaks in SCC(k). These correspond to preferred correlations among atoms of the
same kind or of different kind on length scales associated with the value of k.

The significance of the appearance of an FSDP in the concentration–concentration
partial structure factor SCC(k) is a long-standing matter of debate. Neutron-diffraction
measurements showed an FSDP in the structure factor SCC(k) of both l-GeSe2 and
amorphous (a-GeSe2) [5, 53]. However, first-principles molecular dynamics did not
show any FSDP in the SCC(k) of l-GeSe2 yet featuring excellent agreement for the
total neutron structure factor over the entire k range [33]. According to recent study,
it is possible to rationalize the occurrence of an FSDP in the SCC(k) as a signal for
the departure from chemical order and to identify systems of three different classes
[54]. Class I features networks showing perfect chemical order and the absence of
any FSDP in the SCC(k). To this class belong SiO2 and GeO2 [42, 43, 55]. In class
II one finds networks with a distinct FSDP in the SCC(k). An extended set of such
networks have been found experimentally [56]. In this class the disordered systems
have a very moderate departures from chemical order, as confirmed by the structure
of l-GeSe4 and l-SiSe2 obtained by simulation [54, 37, 57]. A network structure
of class III has so far only been encountered in first-principles molecular dynamics
simulations of l-GeSe2. This is exactly the system considered in the previous section
at the level of the total neutron structure factor with three different schemes for
the XC functional. Like for class I, no feature appears at the FSDP location in the
SCC(k). However, contrarily to class I, the associated network shows a rich variety
of structural motifs in the first-neighbor coordination shells [33]. This latter case
precedes the disappearance of the FSDP from the total neutron structure factor as
occurring for systems with a high degree of structural disorder, such as for l-GeSe2

at high temperatures [8].
The question arises on the correlation existing between the fluctuations of con-

centration and the fluctuations of charge in a DNFM. The first are described by
the concentration–concentration structure factor, while the second are expressed
in terms of the charge–charge structure factor. Is it possible to gain insight into
the presence of the FSDP in SCC(k) by seeking an analogy with a charge distribu-
tion..? To elucidate this issue, the present section is devoted to the calculation of
the charge–charge structure factor. We calculate the charge–charge structure factor
Szz(k) for three AX2 networks: l-SiO2, a-SiSe2, and l-GeSe2. These systems are
representative of the three classes (l-SiO2: class I, a-SiSe2: class II, l-GeSe2: class
III) which were introduced to relate the appearance of an FSDP in the SCC(k) to the
different degrees of departure from chemical order [54]. Our calculations reveal that



366 C. Massobrio

no FSDP appears in any of the calculated charge–charge structure factors Szz(k).
These results provide evidence in support of the postulate advanced in [54] that
no charge ordering is observed at IRO length scales irrespective of fluctuations of
concentration occurring at the same length scales.

In order to calculate Szz(k), one has to consider the self-consistent valence elec-
tron density in the definition of the total charge density composed of ionic and
electronic parts, ρt(r) =∑i ziδ(r − ri ) + ρe(r):

Szz(k) = N−1〈z2
v〉

−1
∫

drdr′ρt(r)ρt(r′)eik·(r−r′). (10)

In a pseudopotential formulation, only the valence electrons are accounted for in
ρe(r), the ionic charges zi being z A = +4 and zX = +6. In Eq. (10) the spherical
average over the orientations of k is assumed implicitly, N is the number of atoms
and 〈z2

v〉 is an appropriate normalization factor, 〈z2
v〉 = z2

vAcA + z2
vX cX . In the expres-

sion for 〈z2
v〉, zvA = +4 and zvX = −2 are the charges attributed to A and X atoms

within a pointlike charge model (PLC). In the limit k → ∞, Szz(∞) = 〈z2〉/〈z2
v〉,

with 〈z2〉 = z2
AcA + z2

X cX . For AX2 systems this leads to Szz(∞) = 3.66.
When the point-like charge (PLC) approximation is adopted, the total charge

density becomes ρt(r) =∑i zviδ(r − ri ). The charge–charge structure factor Szz(k)
is now proportional to SCC(k) and reads

SPLC
zz (k) = N−1〈z2

v〉
−1∑

i j

zvi zv j e
ik·(ri −r j )

= (cAcX)−1SCC(k). (11)

6.1 Liquid SiO2

In liquid SiO2, the Si atoms are at the center of tetrahedra linked by corner-sharing
O atoms, at least at not too high temperatures [42, 43]. The total neutron structure
factor of l-SiO2 exhibits an FSDP at k = 1.6 Å−1 [42, 43]. In Fig. 7, we compare
the structure factors Szz(k) and SCC(k) for l-SiO2, the latter being normalized to
1 for k → ∞ [see Eq. (11)]. No feature appears in the SCC(k) at the FSDP loca-
tion, showing that fluctuations of concentration on the intermediate range scale do
not arise in a system characterized by perfect short-range order. According to the
classification introduced above, this network belongs to class I. The charge–charge
structure factor Szz(k) differs from the concentration–concentration structure factor
SPLC

zz (k). The main peak the Szz(k) is located at kM = 5.1 Å−1, followed by one deep
minimum and shallow oscillations. Within statistical accuracy, the FSDP is absent.
A departure from charge neutrality is therefore not expected for distances beyond
r ∼ 1.5 Å, of the order of the nearest-neighbor distances.
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Fig. 7 Charge–charge structure factor Szz(k) and concentration–concentration structure factor
SCC(k) of liquid SiO2 at T = 3, 500 K. SCC(k) is normalized as in Eq. (11), i.e., SPLC

zz (k) =
(cAcX)−1 SCC(k). The arrows indicate the location of the FSDP in the total neutron structure factor
(kFSDP = 1.6 Å−1)

The differences found between SCC(k) and Szz(k) is a clear demonstration that
structural order and charge order are two distinct physical properties as a conse-
quence of the spatially distributed nature of the electron charge.

6.2 Amorphous SiSe2

Amorphous SiSe2 forms a network representative of class II. In this network there
are a small number of structural defects. Its total neutron structure factor exhibits
an FSDP, while no experimental partial structure factors are currently available. In
the atomic structure of a-SiSe2, edge-sharing connections are predominant, with a
majority of Si atoms that belong to one or two fourfold rings [38]. Experimental
evidence and first-principles molecular dynamics indicate that at least 1% of the
bonds involving Si or Se atoms are homopolar [38, 58, 59]. Figure 8 shows that a
prominent peak is clearly visible at the FSDP location in the SPLC

zz (k) structure factor
of a-SiSe2.

The charge–charge structure factor Szz(k) does not show any peak at the FSDP
location (Fig. 9). However, a feature can be seen in the Szz(k) at a k value corre-
sponding to the main peak in the SPLC

zz (k), kM∼2 Å−1. It appears that fluctuations of
concentrations and fluctuations of charge occur at short-range length scales. How-
ever, while fluctuations of charge are suppressed for distances beyond r ∼ 3.8 Å,
fluctuations of concentration persist for larger distances, as proved by the peak
at kFSDP = 1 Å−1. The behavior found for a-SiSe2 shows that the fluctuations
of concentration over IRO length scales are sensitive to the presence of a small
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Fig. 8 Charge–charge structure factor Szz(k) and concentration–concentration structure factor
SCC(k) of amorphous SiSe2 at T = 300 K. SCC(k) is normalized as in Eq. (11), i.e., SPLC

zz (k) =
(cAcX)−1 SCC(k). The arrows indicate the location of the FSDP in the total neutron structure factor
(kFSDP = 1.0 Å−1)

number of structural defects. These defects are responsible for the appearance of
an FSDP in the SCC(k). Interestingly, the condition of charge neutrality over IRO
length scales is not affected by the small deviation from chemical order found
in a-SiSe2.
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Liquid GeSe2

Fig. 9 Charge–charge structure factor Szz(k). and concentration–concentration structure factor
SCC(k) of liquid GeSe2 at T = 1, 050 K. SCC(k) is normalized as in Eq. (11), i.e., SPLC

zz (k) =
(cAcX)−1 SCC(k). Dots with error bars: experimental results [5]. The arrows indicate the location of
the FSDP in the total neutron structure factor (kFSDP = 1.0 Å−1)
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6.3 Liquid GeSe2

The partial structure factors of l-GeSe2 have been measured by Penfold and Salmon
using the method of isotopic substitution in neutron diffraction [5]. A prominent
FSDP characterizes the SCC(k), due to IRO correlations involving mostly Ge Ge
interactions. Accordingly, this network belongs to class II. The situation is some-
what different from the theoretical point of view. Regardless of the XC scheme
employed, the FSDP is vanishing in the calculated SPLC

zz (k) (Fig. 9). This disagree-
ment is a further manifestation of residual inaccuracies in the description of Ge Ge
correlations, partially corrected when changing from PW to BLYP but having less
effect when considering intermediate range properties. By exploiting the very defi-
nition of SPLC

zz (k) in terms of Faber–Ziman structure factors, the low intensity in the
FSDP region is due to an underestimate of the height of the FSDP in the Ge Ge
partial structure factor. While this underestimation does not affect the total neutron
structure factor because of compensation effects related to the other partial structure
factors, this discrepancy is magnified in the SCC(k) [i.e., in SPLC

zz (k)].
As shown in the section devoted to the structure of l-GeSe2, calculations pre-

dict a predominant fourfold GeSe4 coordination coexisting with a large variety of
structural motifs [33]. This marked departure from perfect tetrahedral order shows
that fluctuations of concentration on IRO distances are suppressed in the presence of
a high concentration of defective units. Therefore, the absence of the FSDP in SCC(k)
might result from two drastically different origins, i.e., from the establishment of
perfect chemical order (as in l-SiO2, class I) or from the occurrence of a high level
of structural disorder (as in the simulations of l-GeSe2, class III).

The charge–charge structure factor Szz(k) of l-GeSe2 and of a-SiSe2 behave
similarly. No charge ordering occurs at IRO scales in disordered network-forming
materials (no FSDP visible), and this holds irrespective of the presence of fluctua-
tions of concentration on the same length scale. The absence of any feature below
the shoulder at ks∼2 Å−1 in the Szz(k) is indicative that no departure from charge
neutrality is expected for distances beyond ∼3.8 Å.

In summary, for the three DNFM liquid SiO2, amorphous SiSe2 and liquid GeSe2

(all characterized by IRO, that is by an FSDP in the total neutron structure fac-
tor) three distinct behaviors have been identified in the concentration–concentration
structure factor SCC(k) at low k values. When the network is made of nondefective
tetrahedral units, the FSDP in the SCC(k) is absent (class I). A moderate departure
from perfect chemical order is reflected by a distinct feature at the FSDP location in
the SCC(k) structure factor (class II). This mark disappears again for higher levels of
disorder (class III).

7 Origin of the FSDP in SCC(k)

In the search of the atomic-scale origins of intermediate range order, two sets of
results have been presented so far. In the first, we have shown that the FSDP in
the total neutron structure factor is associated to the presence of a predominant
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structural unit, the tetrahedra in the case of AX2 DNFM materials. This rationale
has been developed by taking l-GeSe2 as a prototypical example. In the second
set of results, we have provided evidence for the correlation existing between a
moderate departure from chemical order and the appearance of FSDP in the SCC(k)
concentration–concentration structure factor. In view of the above findings, we are
left with the open issue of finding the microscopic origin for the presence of the
FSDP in SCC(k). Is there a specific structural unit accounting for this feature..? In
what follows we address this issue by exploiting the FPMD trajectories obtained for
l-GeSe2 with the PW XC functional.

Our analysis is based on the observation that the FSDP height (FSDP-h hereafter)
in SCC(k) varies during the course of the simulation between a minimum of 0.04 and
a maximum of 0.36, showing similar fluctuations as the FSDP-h in the total struc-
ture factor [6]. The evolution of the FSDP-h allows a partition of the instantaneous
atomic configurations occurring during the motion into two sets, corresponding to
values of the FSDP-h in SCC(k), respectively, smaller and larger than the average
0.136. We shall refer to these two sets as Elow (FSDP-h in SCC(k)≤0.136) and Ehigh

(FSDP-h in SCC(k)>0.136).
In Fig. 10, SGeGe(k) averaged over Elow and Ehigh is compared to neutron scattering

data [5]. SSeSe(k) and SGeSe(k) are not shown since the results obtained for Elow and
Ehigh do not differ substantially. The improvement obtained for SGeGe(k) in the Ehigh

is remarkable in the height of the FSDP, now very close to the experimental value.
It should be added that the total neutron structure factor corresponding to Elow and
Ehigh are very similar. This is consistent with the fact that the FSDP in the total
neutron structure factor appears in the two subtrajectories, being both characterized
by a predominant tetrahedral arrangement.

To understand which structural properties can be correlated to the different
behaviors of SGeGe(k) and SCC(k) over Elow and Ehigh, one has to identify which
structural differences exist between the two subsets. The one that appears the most
notable is the number of Ge atoms belonging to two fourfold rings, termed Ge(2).
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Fig. 10 Ge–Ge partial structure factor for liquid GeSe2: experiment (dots with error bars) [5]
compared to the theoretical result obtained by averaging separately over all configurations in Elow
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Fig. 11 Snapshots of structural subunits found in liquid GeSe2. Ge atoms are dark and Se atoms
are light. Bonds are drawn when two atoms are separated by less than 3 Å, the first minimum in
the Ge–Se radial pair distribution function. Ge atoms forming a Ge∗ subunit are surrounded by a
dashed line

The typical configuration associated with a Ge(2) atom involves two four-
fold rings forming a chain and having in common only the Ge(2) atom, i.e., a
Ge(1) Ge(2) Ge(1) chain (see Fig. 11). These sequences are of particular interest
since, by omitting the four internal Ge Se bonds, their total valence (four) equals
that of a single Ge atom. We term these Ge(1) Ge(2) Ge(1) subunits Ge∗. Note
that in Fig. 11 Ge∗ has a total valence of four but it is threefold coordinated due
to a miscoordination affecting one of the Ge(1) atoms. Most of the Ge(2) form
Ge∗ subunits, the number of Ge∗ in Ehigh remaining significantly larger than in Elow

(3.4±0.1 vs. 3.0±0.1, 8.5 vs. 7.5%, respectively).
In the search of a correlation between Ge(n) and FSDP-h in the partial structure

factors, we recorded the instantaneous values of this latter quantity over the full
trajectory. Then, we found the average FSDP-h and its corresponding error bar asso-
ciated to instantaneous configurations with a given amount of Ge(n), for different
values of n. No correlation is found between the amount of Ge(n) (n = 0, 1) and
the FSDP-h in the partial structure factor SGeGe(k). The same holds for SGeSe(k) and
SSeSe(k) for all n, consistent with their low sensitivity to the separation of configura-
tions in Elow and Ehigh. On the contrary, the FSDP-h of SGeGe(k) grows linearly with
the number of Ge∗ units. As a consequence, SCC(k) also increases with the number
of Ge∗ (Fig. 12). This allows us to identify Ge∗ as the structural feature responsible
for the appearance of the FSDP in SCC(k).

The relationship between the FSDP-h in SGeGe(k) and the number of pairs of con-
nected fourfold rings implies that Ge Ge distances in these subunits are relevant to
intermediate range order. This point is substantiated by the distribution of distances
between pairs of Ge atoms at the opposite sides in each Ge∗ unit (Fig. 12). Indeed,
a pronounced peak stands out at ∼6.5 Å in Fig. 12. This value is compatible with
the relationship between the position r of a peak in real space and the position k
of a corresponding peak in Fourier space, k · r ≈ 7.7. This identifies the location
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structure factor SCC(k) as a function of the number of Ge∗ subunits. On the right: Distribution
of distances between pairs of Ge atoms at the opposite ends of Ge∗ subunits

of the first maximum of the spherical Bessel function. The FSDP position in our
model is at 1.13 Å−1. Therefore, we conclude that the structural motif consisting of
a sequence of tetrahedra connected in a edge-sharing fashion is at the origin of the
presence of the FSDP in the concentration–concentration structure factor.

8 Conclusions

In disordered network-forming materials the extent of structural order is larger than
in ordinary liquid and glasses. An intermediate range order is observed through the
appearance of a first sharp diffraction peak in the total neutron structure factor and,
for some cases, in some of the partials. By employing first-principles molecular
dynamics, the goal is to correlate these specific features to a predominant nanos-
tructural unit or to a collection of them. The explicit account of the electronic
structure proved necessary to describe bonding in systems where there is a delicate
balance of ionic and covalent contributions. Furthermore, within a well-established
DFT Kohn–Sham framework, the choice of the exchange–correlation functional was
found to be crucial. In this review, the first-principles molecular dynamics tool has
been proved useful in two respects. First, it has allowed to elucidate the atomic struc-
ture of the networks, by associating specific structural features to the shapes taken
by the structure factors (in reciprocal space) and by the pair correlation functions
(in real space). Second, the use of distinct exchange–correlation functionals has
made available three atomic-scale descriptions differing by the spatial distribution
of the electronic charge density, LDA being the most delocalized and BLYP being
the most localized on the atomic sites. By combining these two approaches, one



Nanostructural Units in Disordered Network-Forming Materials 373

is able to recover the structural features and changes encountered when adopting
these schemes at an increased level of accuracy, i.e., going from LDA to PW to
BLYP for the exchange–correlation part of the DFT Kohn–Sham functional. Three
crucial issues have been addressed and solved: (a) what is the atomic configuration
corresponding to the onset of intermediate range order through the appearance of
the first sharp diffraction peak? This question has to do with the organization of the
network irrespective of its chemical composition, (b) what are the building blocks of
a network leading to an FSDP in the concentration–concentration structure factor?,
and (c) what are the structural units associated to an FSDP in the concentration–
concentration structure factor? These last two points are intimately related with the
chemical nature of the systems. By focusing mostly on a prototypical disordered
network-forming material (liquid GeSe2), we have shown that (a) the first sharp
diffraction peak in the total neutron structure factor is linked to the existence of a
predominant structural unit (the tetrahedra for a AX2 system), (b) the first sharp
diffraction peak in the concentration–concentration structure factor occurs for mod-
erate levels of chemical disorder, and (c) its occurrence is due to the existence of
chains of tetrahedra connected in an edge-sharing fashion.
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